首页> 外文期刊>Journal of the American Chemical Society >Controlling the Mechanism of Phase Transformation of Colloidal In_2O_3 Nanocrystals
【24h】

Controlling the Mechanism of Phase Transformation of Colloidal In_2O_3 Nanocrystals

机译:控制胶体In_2O_3纳米晶的相变机理

获取原文
获取原文并翻译 | 示例
       

摘要

Controlling the crystal structure of transparent metal oxides is essential for tailoring the properties of these polymorphic materials to specific applications. The structural control is usually done via solid state phase transformation at high temperature or pressure. Here, we report the kinetic study of in situ phase transformation of In_2O_3 nanocrystals from metastable rhombohedral phase to stable cubic phase during their colloidal synthesis. By examining the phase content as a function of time using the model fitting approach, we identified two distinct coexisting mechanisms, surface and interface nucleation. It is shown that the mechanism of phase transformation can be controlled systematically through modulation of temperature and precursor to solvent ratio. The increase in both of these parameters leads to gradual change from surface to interface nucleation, which is associated with the increased probability of nanocrystal contact formation in the solution phase. The activation energy for surface nucleation is found to be 144 ± 30 kJ/mol, very similar to that for interface nucleation. Despite the comparable activation energy, interface nucleation dominates at higher temperatures due to increased nanocrystal interactions. The results of this work demonstrate enhanced control over polymorphic nanocrystal systems and contribute to further understanding of the kinetic processes at the nanoscale, including nucleation, crystallization, and biomineralization.
机译:控制透明金属氧化物的晶体结构对于使这些多晶型材料的性能适应特定应用至关重要。通常通过高温或高压下的固态相变来完成结构控制。在这里,我们报告了In_2O_3纳米晶体在其胶体合成过程中从亚稳态菱面体相到稳定立方相的原位相变动力学研究。通过使用模型拟合方法检查相含量随时间的变化,我们确定了两种不同的共存机制,表面和界面成核。结果表明,可以通过调节温度和前驱体与溶剂的比例来系统地控制相变的机理。这两个参数的增加导致从表面到界面成核的逐渐变化,这与在溶液相中形成纳米晶体接触的可能性增加有关。发现表面成核的活化能为144±30 kJ / mol,与界面成核的活化能非常相似。尽管具有相当的活化能,但由于纳米晶体相互作用的增加,界面成核在较高温度下仍占主导地位。这项工作的结果表明,对多晶型纳米晶体系统的控制得到增强,并有助于进一步了解纳米级的动力学过程,包括成核,结晶和生物矿化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第3期|1101-1108|共8页
  • 作者单位

    Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada;

    Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号