首页> 外文期刊>Journal of testing and evaluation >Investigation of Stress-Strain Relationship of Confined Concrete in Hollow Bridge Columns Using Neural Networks
【24h】

Investigation of Stress-Strain Relationship of Confined Concrete in Hollow Bridge Columns Using Neural Networks

机译:空心桥柱中承压混凝土应力-应变关系的神经网络研究

获取原文
获取原文并翻译 | 示例

摘要

Typically, material modeling has involved the development of mathematical models of material behavior derived from human observation of experimental data. An alternative procedure, discussed in this paper, is to use a computation and knowledge representation paradigm, called a network, to model material behavior. The main benefits in using a neural network is that the network is built directly from experimental data using the self-organizing capabilities of the neural network, i.e., the network is presented with the experimental data and learns the relationships between stresses and strains. Such a modeling strategy has important implications for modeling the behavior of complex materials. In this paper, the stress-strain relationship of confined concrete in hollow bridge columns is modeled with a back-propagation neural network. The results of using networks to study the behavior of confined concrete look very promising.
机译:通常,材料建模涉及从人类对实验数据的观察中得出的材料行为数学模型的开发。本文讨论的另一种方法是使用称为网络的计算和知识表示范例来对物质行为进行建模。使用神经网络的主要好处是该网络是使用神经网络的自组织功能直接根据实验数据构建的,即向网络展示实验数据并了解应力和应变之间的关系。这种建模策略对复杂材料的行为建模具有重要意义。本文利用反向传播神经网络对空心桥柱中承压混凝土的应力-应变关系进行建模。使用网络研究承压混凝土性能的结果看起来很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号