首页> 外文期刊>Journal of testing and evaluation >Low Proof Load Prediction of Ultimate Loads of Fiberglass/Epoxy Resin I-Beams Using Acoustic Emission
【24h】

Low Proof Load Prediction of Ultimate Loads of Fiberglass/Epoxy Resin I-Beams Using Acoustic Emission

机译:使用声发射对玻璃纤维/环氧树脂工字梁的最终载荷进行低强度载荷预测

获取原文
获取原文并翻译 | 示例

摘要

Acoustic emission (AE) nondestructive testing was used to monitor fiberglass/epoxy I-beams. The experiment consisted of loading the I-beams in cantilever fashion with a hydraulic ram. While testing, AE waveforms were collected from the onset of loading to failure. After acquisition, the AE data from each test were filtered to include only data collected up to 50 percent of the theoretical ultimate load for further analysis. A Kohonen self-organizing map (SOM) was utilized to separate individual data points into failure mechanism clusters. Then a multiple linear regression analysis was performed using the percentage of hits associated with each failure mechanism along with the epoxy type to develop a prediction equation. The results of this analysis provided a prediction to within a 36.0 percent error. A second analysis was performed utilizing a back-propagation neural network. The inputs to the network included a categorical variable for the epoxy type together with the amplitude frequencies from 30-100 dB. The optimized network contained two hidden layers having nine neurons apiece. Here the ultimate load prediction was within 48 Ibf for a 9.5 percent error. Thus, the back-propagation neural network produced far better results than the SOM/multiple linear regression, probably because of unwanted noise and perhaps nonlinearities in the data.
机译:声发射(AE)无损检测用于监测玻璃纤维/环氧树脂工字梁。该实验包括用液压柱塞以悬臂方式加载工字梁。在测试期间,从加载开始到故障开始收集AE波形。采集后,对每个测试的AE数据进行过滤,以仅包括收集到理论极限载荷的50%的数据,以进行进一步分析。利用Kohonen自组织图(SOM)将单个数据点分离为故障机制簇。然后,使用与每个故障机制相关的命中百分比以及环氧树脂类型进行多元线性回归分析,以开发预测方程。分析结果提供了36.0%的误差范围内的预测。利用反向传播神经网络进行第二次分析。网络的输入包括用于环氧树脂类型的分类变量以及30-100 dB的幅度频率。优化的网络包含两个隐藏的层,每个都有9个神经元。在此,最终负载预测在48 Ibf之内,误差为9.5%。因此,反向传播神经网络产生的结果比SOM /多元线性回归要好得多,这可能是由于不需要的噪声以及数据中的非线性所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号