首页> 外文期刊>The Journal of Systems and Software >Employing rule mining and multi-objective search for dynamic test case prioritization
【24h】

Employing rule mining and multi-objective search for dynamic test case prioritization

机译:使用规则挖掘和多目标搜索动态测试案例优先级

获取原文
获取原文并翻译 | 示例

摘要

Test case prioritization (TP) is widely used in regression testing for optimal reordering of test cases to achieve specific criteria (e.g., higher fault detection capability) as early as possible. In our earlier work, we proposed an approach for black-box dynamic TP using rule mining and multi objective search (named as REMAP) by defining two objectives (fault detection capability and test case reliance score) and considering test case execution results at runtime. In this paper, we conduct an extensive empirical evaluation of REMAP by employing three different rule mining algorithms and three different multi-objective search algorithms, and we also evaluate REMAP with one additional objective (estimated execution time) for a total of 18 different configurations (i.e., 3 rule mining algorithms x 3 search algorithms x 2 different set of objectives) of REMAP. Specifically, we empirically evaluated the 18 variants of REMAP with 1) two variants of random search while using two objectives and three objectives, 2) three variants of greedy algorithm based on one objective, two objectives, and three objectives, 3) 18 variants of static search-based prioritization approaches, and 4) six variants of rule-based prioritization approaches using two industrial and three open source case studies. Results showed that the two best variants of REMAP with two objectives and three objectives significantly outperformed the best variants of competing approaches by 84.4% and 88.9%, and managed to achieve on average 14.2% and 18.8% higher Average Percentage of Faults Detected per Cost (APFDC) scores. (C) 2019 Elsevier Inc. All rights reserved.
机译:测试案例优先级(TP)广泛用于回归测试,以尽早实现测试用例的最佳重新排序,以尽早实现具体标准(例如,更高的故障检测能力)。在我们之前的工作中,我们通过定义两个目标(故障检测能力和测试案例Reliance Reliance评分,通过规则挖掘和多目标搜索(命名为REMAP)并考虑运行时的测试案例执行结果,提出了一种使用规则挖掘和多目标搜索(命名为REMAP)的方法。在本文中,我们通过采用三种不同的规则挖掘算法和三种不同的多目标搜索算法进行广泛的refap进行了广泛的实证评估,我们还通过一个附加目标(估计的执行时间)进行重新映射,总共18个不同的配置(即,3规则挖掘算法x 3搜索算法x 2不同的目标集合)的重映射。具体而言,我们经验凭经验评估了18个变种的REMAP,1)两个随机搜索的两个变体,同时使用两个目标和三个目标,2)基于一个目标,两个目标和三个目标,3)18变体的三种变体基于静态搜索的优先级方法,4)使用两个工业和三个开源案例研究的基于规则的优先级方法的六种变体。结果表明,两种目标的两种最佳变种和三个目标的倒数最佳变化明显优于竞争方法的最佳变体84.4%和88.9%,并达到平均每次成本检测到的差错率的14.2%和18.8%的百分比增加18.2%和18.8%( APFDC)分数。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号