首页> 外文期刊>The Journal of Systems and Software >LCBM: a fast and lightweight collaborative filtering algorithm for binary ratings
【24h】

LCBM: a fast and lightweight collaborative filtering algorithm for binary ratings

机译:LCBM:一种用于二进制评级的快速轻量协作过滤算法

获取原文
获取原文并翻译 | 示例

摘要

In the last ten years, recommendation systems evolved from novelties to powerful business tools, deeply changing the internet industry. Collaborative Filtering (CF) represents a widely adopted strategy today to build recommendation engines. The most advanced CF techniques (i.e. those based on matrix factorization) provide high quality results, but may incur prohibitive computational costs when applied to very large data sets. In this paper we present Linear Classifier of Beta distributions Means (LCBM), a novel collaborative filtering algorithm for binary ratings that is (ⅰ) inherently parallelizable (ⅱ) provides results whose quality is on-par with state-of-the-art solutions (ⅲ) at a fraction of the computational cost. These characteristics allow LCBM to efficiently handle large instances of the collaborative filtering problem on a single machine in short timeframes.
机译:在过去的十年中,推荐系统从新颖性发展到功能强大的业务工具,深刻地改变了互联网行业。协作过滤(CF)代表了当今广泛采用的建立推荐引擎的策略。最先进的CF技术(即基于矩阵分解的技术)可提供高质量的结果,但当将其应用于非常大的数据集时可能会导致计算成本过高。在本文中,我们介绍了Beta分布均值的线性分类器(LCBM),这是一种新颖的针对二进制评级的协作过滤算法(ⅰ)本质上可并行化(ⅱ),可提供质量与最新解决方案相当的结果(ⅲ)的计算成本很小。这些特性使LCBM可以在短时间内有效地在一台计算机上处​​理大型协同过滤问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号