首页> 外文期刊>Journal of symbolic computation >Groebner bases with respect to several orderings and multivariable dimension polynomials
【24h】

Groebner bases with respect to several orderings and multivariable dimension polynomials

机译:关于几个排序和多元维度多项式的Groebner基

获取原文
获取原文并翻译 | 示例

摘要

Let D = K[X] be a ring of Ore polynomials over a field K and let a partition of the set of indeterminates into p disjoint subsets be fixed. Considering D as a filtered ring with the natural p-dimensional filtration, we introduce a special type of reduction in a free D-module and develop the corresponding Grobner basis technique (in particular, we obtain a generalization of the Buchberger Algorithm). Using such a modification of the Grobner basis method, we prove the existence of a Hilbert-type dimension polynomial in p variables associated with a finitely generated filtered D-module, give a method of computation and describe invariants of such a polynomial. The results obtained are applied in differential algebra where the classical theorems on differential dimension polynomials are generalized to the case of differential structures with several basic sets of derivation operators.
机译:令D = K [X]是字段K上的Ore多项式环,并让不确定集合划分为p个不相交的子集是固定的。将D视为具有自然p维过滤的已过滤环,我们在自由D模中引入了一种特殊的约简形式,并开发了相应的Grobner基技术(特别是获得了Buchberger算法的推广)。使用Grobner基方法的这种修改,我们证明了与有限生成的滤波D模块相关联的p个变量中存在希尔伯特类型维多项式,给出了一种计算方法并描述了该多项式的不变量。所得结果应用于微分代数,其中微分维多项式的经典定理被推广到具有几组基本导数算子的微分结构的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号