首页> 外文期刊>Journal of symbolic computation >Key equations for list decoding of Reed-Solomon codes and how to solve them
【24h】

Key equations for list decoding of Reed-Solomon codes and how to solve them

机译:Reed-Solomon码列表解码的关键方程式以及如何求解它们

获取原文
获取原文并翻译 | 示例

摘要

A Reed-Solomon code of length n can be list decoded using the well-known Guruswami-Sudan algorithm. By a result of Alekhnovich (2005) the interpolation part in this algorithm can be done in complexity O(s~4 l~4 n log2 n log log n), where l denotes the designed list size and s the multiplicity parameter. The parameters l and s are sometimes considered to be constants in the complexity analysis, but for high rate Reed-Solomon codes, their values can be very large. In this paper we will combine ideas from Alekhnovich (2005) and the concept of key equations to get an algorithm that has complexity O(sl~4 n log~2 n log log n). This compares favorably to the complexities of other known interpolation algorithms.
机译:可以使用众所周知的Guruswami-Sudan算法对长度为n的Reed-Solomon码进行列表解码。根据Alekhnovich(2005)的结果,该算法的插值部分可以以复杂度O(s〜4 l〜4 n log2 n log log n)完成,其中l表示设计的列表大小,s表示多重性参数。在复杂度分析中,有时将参数l和s视为常数,但是对于高速率Reed-Solomon码,它们的值可能非常大。在本文中,我们将结合Alekhnovich(2005)的观点和关键方程的概念来获得算法,该算法的复杂度为O(sl〜4 n log〜2 n log log n)。与其他已知插值算法的复杂性相比,这是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号