首页> 外文期刊>Journal of supercomputing >An efficient query optimization technique in big data using σ-ANFIS load balancer and CaM-BW optimizer
【24h】

An efficient query optimization technique in big data using σ-ANFIS load balancer and CaM-BW optimizer

机译:使用Σ-ANFIS负载平衡器和CAM-BW Optimizer的大数据中有效的查询优化技术

获取原文
获取原文并翻译 | 示例

摘要

Big data (BD) is attaining major attention in the information field due to the eruption of data in the preceding decade. Philosophical techniques of "query optimization (QO)" have an essential function in data retrieval as of a BD environment. Numerous cloud-centered distributed data processing platforms were developed to render effective as well as lucrative solutions for BD query optimization. Nevertheless, most techniques brought about higher "energy consumptions (EC)" along with low accuracy level because of the lack of deliberation of energy issues as well as query characteristics, correspondingly. To tackle the issues of query optimization process, this paper proposes an "efficient query optimization (EQO)" utilizing sigma ANFIS load balancer in addition to the CaM-BW optimizer. The proposed technique comprises '2 ' phases: (1) BD arrangement and (2) QO. In the initial phase, the BD is arranged by utilizing preprocessing, feature extraction, together with clustering. The MCoV-FCM algorithm takes care of the clustering. In the second phase, the sigma ANFIS load balancer in addition to the CaM-BW optimizer concentrates on disregarding the energy-efficient query plans and enhancing the general query processing performance. Lastly, numerical simulation outcomes are rendered to display the proposed method's effectiveness.
机译:由于前几十年中的数据爆发,大数据(BD)是在信息领域的主要关注。 “查询优化(QO)”的哲学技术在数据检索中具有基本函数,如BD环境的数据检索。开发了众多云中心分布式数据处理平台,以呈现有效的BD查询优化的有效解决方案。然而,由于缺乏对能量问题以及查询特性,相应地,大多数技术以及低精度水平带来更高的“能量消耗(EC)”。为了解决查询优化过程的问题,除了CAM-BW Optimizer之外,该文件还提出了利用Sigma ANFIS负载平衡器的“高效查询优化(EQO)”。所提出的技术包括'2'阶段:(1)BD布置和(2)Qo。在初始阶段中,通过利用预处理,特征提取,与聚类一起布置BD。 MCOV-FCM算法负责群集。在第二阶段,Sigma ANFIS负载平衡器除了凸轮BW优化器外,还专注于忽略节能查询计划并增强一般查询处理性能。最后,呈现数值模拟结果以显示所提出的方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号