首页> 外文期刊>Journal of supercomputing >Classification of hyperspectral remote sensing image via rotation-invariant local binary pattern-based weighted generalized closest neighbor
【24h】

Classification of hyperspectral remote sensing image via rotation-invariant local binary pattern-based weighted generalized closest neighbor

机译:通过旋转不变的局部二进制图案的加权最近邻居分类高光谱遥感图像

获取原文
获取原文并翻译 | 示例

摘要

In this article, the authors suggested a rotation-invariant local binary pattern-based weighted generalized closest neighbor (RILBP-WGCN) method for HSI classification. The proposed RILBP is an enhanced texture-based classification paradigm that utilizes local binary pattern filter for some designated bands to generate a broad sketch of spatial texture information. Likewise, the proposed WGCN technique efficiently maintains the spatial uniformity between the nearby pixels via utilizing a local weight scheme and point-to-set distance. Also, as a postprocessing step, a label enhancement method is included for additional enhancement of the label uniformity as well as increases the performance of classification method. The color composite remotely sensed image of the initial three subsequent bands is segmented into several consistent regions by utilizing the graph-based superpixel segmentation technique. Then, extracted super pixels have been made extra homogeneous by utilizing a segment grouping process. Finally, advanced decision-level fusion is also applied on the retrieved local LBP features and unique spectral features, where linear opinion pool executes a serious role for concatenating the probabilistic outcomes of numerous spectral as well as texture features. The authors evaluated the proposed technique by comparing them with the seven competing methods on numerous datasets related to HSI classification. Evaluation results confirmed that the classification effects of proposed RILBP-WGCN algorithm are significantly better in contrast to other competing classification schemes.
机译:在本文中,作者提出了一种用于HSI分类的旋转不变的本地二进制模式的加权最近邻接(RILBP-WGCN)方法。所提出的RILBP是一种增强的基于纹理的分类范例,其利用用于一些指定频带的本地二进制模式滤波器来生成空间纹理信息的广泛草图。同样地,所提出的WGCN技术通过利用局部权重方案和点对点距离有效地在附近像素之间的空间均匀性。而且,作为后处理步骤,包括标签增强方法以额外提高标签均匀性,以及增加分类方法的性能。通过利用基于曲线图的超像素分割技术将初始三个后续条带的初始三个后续条带的彩色复合物被检测的图像分段为几个一致的区域。然后,通过利用段分组处理,已经提取了提取的超像素。最后,高级决策级别融合也应用于检索到的本地LBP功能和独特的频谱特征,其中线性意见池在连接众多光谱以及纹理特征的概率结果中执行严重的作用。作者通过将七种竞争方法与与HSI分类相关的许多数据集进行比较来评估所提出的技术。评估结果证实,与其他竞争分类方案相比,所提出的RILBP-WGCN算法的分类效果明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号