首页> 外文期刊>Journal of supercomputing >Deep learning and case-based reasoning for predictive and adaptive traffic emergency management
【24h】

Deep learning and case-based reasoning for predictive and adaptive traffic emergency management

机译:基于深度学习和基于案例的预测和适应性交通应急管理的推理

获取原文
获取原文并翻译 | 示例

摘要

An efficient traffic signal control system (TSCS) should not only be reactive to the current traffic but also be predictive by anticipating future traffic disturbances. In this study, we investigate the potential of using convolution neural network (CNN) in detecting emergency cases and forecasting events that can interrupt the traffic flow. Case-based reasoning (CBR) is then exploited to react to detected and forecasted events. We further develop an adapted Reinforcement Leaning (RL) algorithm in building and enhancing the case bases. The proposed system inherits the advantages of CNN, CBR, and RL, which allow detection, prediction, control, evaluation, and learning in a unified framework. To assess the proposed TSCS, we compare our approach with a set of state-of-art algorithms (e.g., multi-agent preemptive case-based reasoning algorithm and multi-agent preemptive longest queue first-maximal weight matching). The proposed TSCS outperforms the benchmarking algorithms through experiments in various traffic scenarios.
机译:有效的交通信号控制系统(TSCS)不仅应该对当前流量的反应,而且通过预期未来的交通障碍也是预测的。在这项研究中,我们调查使用卷积神经网络(CNN)在检测可以中断交通流量的预测事件时使用卷积神经网络(CNN)的潜力。然后利用基于案例的推理(CBR)以对检测到和预测事件进行反应。我们进一步开发了建筑物和增强壳体基础的改进的增强倾斜(RL)算法。所提出的系统继承了CNN,CBR和RL的优势,允许在统一框架中检测,预测,控制,评估和学习。为了评估所提出的TSC,我们将我们的方法与一组最先进的算法进行比较(例如,基于多代理抢先的案例的推理算法和多代理抢先最长队列的第一最大重量匹配)。所提出的TSCS通过各种交通方案的实验来实现基准算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号