首页> 外文期刊>Journal of supercomputing >Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning
【24h】

Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning

机译:利用深度学习对农业低温预测的边缘计算平台性能评价

获取原文
获取原文并翻译 | 示例

摘要

The Internet of Things (IoT) is driving the digital revolution. AlSome palliative measures aremost all economic sectors are becoming “Smart” thanks to the analysis of data generated by IoT. This analysis is carried out by advance artificial intelligence (AI) techniques that provide insights never before imagined. The combination of both IoT and AI is giving rise to an emerging trend, called AIoT, which is opening up new paths to bring digitization into the new era. However, there is still a big gap between AI and IoT, which is basically in the computational power required by the former and the lack of computational resources offered by the latter. This is particularly true in rural IoT environments where the lack of connectivity (or low-bandwidth connections) and power supply forces the search for “efficient” alternatives to provide computational resources to IoT infrastructures without increasing power consumption. In this paper, we explore edge computing as a solution for bridging the gaps between AI and IoT in rural environment. We evaluate the training and inference stages of a deep-learning-based precision agriculture application for frost prediction in modern Nvidia Jetson AGX Xavier in terms of performance and power consumption. Our experimental results reveal that cloud approaches are still a long way off in terms of performance, but the inclusion of GPUs in edge devices offers new opportunities for those scenarios where connectivity is still a challenge.
机译:事情互联网(物联网)正在推动数字革命。 alsome姑息措施aremost所有经济部门都归功于IOT生成的数据分析。这种分析由预先人工智能(AI)技术进行,这些技术提供了从未想象过的见解。 IOT和AI的结合正在引起一种叫做AIET的新兴趋势,这正在开辟新的道路,以将数字化进入新时代。然而,AI和IOT之间仍然存在巨大差距,这基本上是前者所需的计算能力和后者缺乏所提供的计算资源。在缺乏连接(或低带宽连接)和电源的情况下,在没有增加功耗的情况下,缺乏连接(或低带宽连接)和电源来搜索“高效”替代方案的替代,这尤其如此。在本文中,我们探索了Edge Computing作为遍布农村环境中AI和IOT之间的差距的解决方案。我们在性能和功耗方面评估了基于深度学习的基于教育精确农业应用的培训和推理阶段,在现代NVIDIA Jetson Agx Xavier中进行霜预测。我们的实验结果表明,在性能方面仍然是长途措施,但在边缘设备中包含GPU为这些方案提供了新的机会,即连接仍然是一个挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号