首页> 外文期刊>Journal of supercomputing >Autotuning based on frequency scaling toward energy efficiency of blockchain algorithms on graphics processing units
【24h】

Autotuning based on frequency scaling toward energy efficiency of blockchain algorithms on graphics processing units

机译:基于频率缩放对图形处理单元中区块链算法能效的频率缩放

获取原文
获取原文并翻译 | 示例

摘要

Energy-efficient computing is especially important in the field of high-performance computing (HPC) on supercomputers. Therefore, automated optimization of energy efficiency during the execution of a compute-intensive program is desirable. In this article, a framework for the automatic improvement of the energy efficiency on NVIDIA GPUs (graphics processing units) using dynamic voltage and frequency scaling is presented. As application, the mining of crypto-currencies is used, since in this area energy efficiency is of particular importance. The framework first determines the energy-optimal frequencies for each available currency on each GPU of a computer automatically. Then, the mining is started, and during a monitoring phase it is ensured that always the most profitable currency is mined on each GPU, using optimal frequencies. Tests with different GPUs show that the energy efficiency, depending on the GPU and the currency, can be increased by up to 84% compared to the usage of the default frequencies. This in turn almost doubles the mining profit.
机译:节能计算在超级计算机上的高性能计算(HPC)领域尤为重要。因此,期望在执行计算密集型程序期间自动优化能量效率。在本文中,介绍了一种使用动态电压和频率缩放自动提高NVIDIA GPU(图形处理单元)上的能量效率的框架。作为施用,使用密码货币的采矿,因为在该区域中的能效特别重要。该框架首先在自动的每个GPU上确定每个可用货币的能量最佳频率。然后,开采开始,并且在监控阶段期间,确保使用最佳频率,始终在每个GPU上开采最有利可图的货币。与不同GPU的测试表明,与GPU和货币的能效,与默认频率的使用相比,可以增加高达84%。这反过来几乎使采矿利润翻了一番。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号