首页> 外文期刊>Journal of supercomputing >A new multi-level trust management framework (MLTM) for solving the invalidity and sparse problems of user feedback ratings in cloud environments
【24h】

A new multi-level trust management framework (MLTM) for solving the invalidity and sparse problems of user feedback ratings in cloud environments

机译:一种新的多级别信任管理框架(MLTM),用于解决云环境中用户反馈额定值的无效和稀疏问题

获取原文
获取原文并翻译 | 示例

摘要

Choosing a trusted cloud service provider (CSP) is a major challenge for cloud users (CUs) in the cloud environment, as many CSPs offer cloud services (CSs) with the same functionality. Trust evaluation of CSPs is often based on information from quality of service (QoS) monitoring and CUs' feedback ratings. Despite the volume of feedback ratings received in trust management systems, the quality of feedback storage is very low, as many CUs do not send their feedback ratings when using CSs. Additionally, a percentage of existing feedback ratings may not be valid, since some malicious CUs send unfair feedback ratings to change the trust evaluation results. As these lead to poor data quality, the accuracy of trust evaluation results might be affected. To overcome these limitations, this paper proposes a new multi-level trust management framework, which completes previous frameworks by defining new components to improve the data quality of feedback storage. In our framework, new components were defined to solve the invalidity and sparse problems of feedback storage. Certainly, the trust assessment of CSP would be more accurate based on high-quality feedback ratings. The performance of the MLTM was evaluated using two different datasets based on a real Quality of Web Services dataset (QWS) and an artificial data set (Cloud-Armor), whose quality was reduced for the purpose of this study. Analytical values revealed that our proposed approach significantly outperformed other approaches even with the poor data quality of feedback storage.
机译:选择受信任的云服务提供商(CSP)是云环境中的云用户(CU)的主要挑战,因为许多CSP提供了具有相同功能的云服务(CSS)。 CSP的信任评估通常基于来自服务质量(QoS)监测和CUS反馈评级的信息。尽管在信任管理系统中收到的反馈额定值,但反馈存储的质量非常低,尽管使用CSS时,许多CU不会发送反馈额定值。此外,现有反馈额定值的百分比可能无效,因为一些恶意CUS发送不公平的反馈评级以改变信任评估结果。由于这些对数据质量差,信任评估结果的准确性可能会受到影响。为了克服这些限制,本文提出了一种新的多级信任管理框架,通过定义新组件来完成以前的框架来提高反馈存储的数据质量。在我们的框架中,已定义新组件以解决反馈存储的无效和稀疏问题。当然,基于高质量反馈评级,CSP的信任评估将更加准确。根据基于Web服务数据集(QWS)的真实质量和人工数据集(云铠装),使用两个不同的数据集进行评估MLTM的性能,其质量为本研究的目的。分析值表明,即使在反馈存储的数据质量差,我们所提出的方法也显着表现出其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号