首页> 外文期刊>Journal of supercomputing >Incremental collusive fraud detection in large-scale online auction networks
【24h】

Incremental collusive fraud detection in large-scale online auction networks

机译:大规模在线拍卖网络中的增量侵入欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

An online auction network (OAN) is a community of users who buy or sell items through an auction site. Along with the growing popularity of auction sites, concerns about auction frauds and criminal activities have increased. As a result, fraud detection in OANs has attracted renewed interest from researchers. Since most real OANs are large-scale networks, detecting fraudulent users is usually difficult, especially when multiple users collude with each other and new online auctions are continuously added. Although collusive auction frauds are not as popular as other types of auction frauds, they are more horrible and catastrophic because they often bring huge financial losses. To tackle this issue, some techniques have been proposed to detect collusive frauds in OANs. While all of the techniques have demonstrated promising results, they often suffer from low detection performance or slow convergence, especially in large-scale OANs. In this paper, we overcome these deficiencies by presenting ICAFD, a novel technique that recasts the problem of detecting collusive frauds in large-scale OANs as an incremental semi-supervised anomaly detection problem. In this technique, we propagate reputations from a small set of labeled benign users to unlabeled users along the auction relationships between them and then incrementally update reputations when a new auction gets added to the OAN. This increases the convergence of ICAFD and allows it to avoid wasteful recalculation of reputations from scratch. Our experimental results show that ICAFD can successfully detect different types of collusive auction frauds in a reasonable detection time.
机译:在线拍卖网络(OAN)是通过拍卖网站购买或销售物品的用户社区。随着拍卖网站的日益普及,对拍卖欺诈和犯罪活动的担忧增加了。因此,奥斯欺诈检测已吸引研究人员的重复兴趣。由于大多数真实的OAN是大型网络,因此检测欺诈性用户通常很困难,尤其是当多个用户彼此融合和新的在线拍卖时都是持续添加的。虽然Conscluss拍卖欺诈并不像其他类型的拍卖欺诈一样受欢迎,但它们更可怕和灾难性,因为他们经常带来巨大的财务损失。为了解决这个问题,已经提出了一些技术来检测OANS中的侵犯欺诈。虽然所有技术都证明了有希望的结果,但它们经常遭受低的检测性能或缓慢的收敛,特别是在大规模的OAN中。在本文中,我们通过提出ICAFD来克服这些缺陷,这是一种重大重现大规模OAN中的侵占欺诈问题作为增量半监督异常检测问题的问题的新技术。在这种技术中,我们在沿着它们之间的拍卖关系向未标记的用户传播到未标记的用户的声誉,然后在将新的拍卖添加到OAN时逐步更新声誉。这增加了ICAFD的融合,并允许其避免浪费从头划分的声誉。我们的实验结果表明,在合理的检测时间内,ICAFD可以成功地检测不同类型的侵占拍卖欺诈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号