首页> 外文期刊>Journal of supercomputing >A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks
【24h】

A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks

机译:基于CAT群优化的长短期内存神经网络的贪婪特征选择的情绪分析的大数据方法

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis is crucial in various systems such as opinion mining and predicting. Considerable research has been done to analyze sentiment using various machine learning techniques. However, the high error rates in these studies can reduce the entire system's efficiency. We introduce a novel big data and machine learning technique for evaluating sentiment analysis processes to overcome this problem. The data are collected from a huge volume of datasets, helpful in the effective analysis of systems. The noise in the data is eliminated using a preprocessing data mining concept. From the cleaned sentiment data, effective features are selected using a greedy approach that selects optimal features processed by an optimal classifier called cat swarm optimization-based long short-term memory neural network (CSO-LSTMNN). The classifiers analyze sentiment-related features according to cat behavior, minimizing error rate while examining features. This technique helps improve system efficiency, analyzed using experimental results of error rate, precision, recall, and accuracy. The results obtained by implementing the greedy feature and CSO-LSTMNN algorithm and the particle swarm optimization (PSO) algorithm are compared; CSO-LSTMNN outperforms PSO in terms of increasing accuracy and decreasing error rate.
机译:情绪分析在意见挖掘和预测等各种系统中至关重要。已经采用了相当大的研究来分析了各种机器学习技术的情绪。然而,这些研究中的高错误率可以降低整个系统的效率。我们介绍了一种新的大数据和机器学习技术,用于评估情绪分析过程来克服这个问题。从大量的数据集中收集数据,有助于对系统的有效分析。使用预处理数据挖掘概念消除数据中的噪声。从清洁的情绪数据中,使用一种贪婪的方法选择有效特征,该方法选择由名为CAT Swarm优化的长短期内存神经网络(CSO-LSTMNN)的最佳分类器处理的最佳功能。分类器根据CAT行为分析与情绪相关的功能,在检查功能时最小化错误率。该技术有助于提高系统效率,使用误差率,精度,召回和精度的实验结果分析。通过实现贪婪特征和CSO-LSTMNN算法和粒子群优化(PSO)算法而获得的结果; CSO-LSTMNN在提高精度和误差率下降的方面优于PSO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号