首页> 外文期刊>Journal of supercomputing >Fast Recovery MapReduce (FAR-MR) to accelerate failure recovery in big data applications
【24h】

Fast Recovery MapReduce (FAR-MR) to accelerate failure recovery in big data applications

机译:快速恢复MapReduce(FAR-MR),以加速大数据应用中的故障恢复

获取原文
获取原文并翻译 | 示例

摘要

Existing Hadoop MapReduce fault tolerance strategy causes the computing jobs suffering from high performance penalty during failure recovery. In this paper, we propose Fast Recovery MapReduce (FAR-MR) to improve MapReduce performance in failure recovery. FAR-MR includes a novel fault tolerance strategy that combines distributed checkpointing and proactive push mechanism to support fast recovery from task failure and node failure. With distributed checkpointing, computing progress of each task is recorded as checkpoints periodically and kept in distributed data storage. The recovered task can obtain the last progress of the failed task from the distributed storage during failure recovery. In addition, the proactive push mechanism enables the computing results of map tasks to be proactively transmitted to the nodes hosting reduce tasks of the same computing job. When a failure happens, the partial output results being pushed to the reducer nodes can be used by the reduce tasks without the necessity of re-compute. FAR-MR allows a failed task to be recovered efficiently at any node in the cluster. The performance evaluation has shown that the proposed FAR-MR can improve computing job performance by up to 62% and 45% compared to Hadoop MapReduce in the case of task failure recovery and node failure recovery, respectively.
机译:现有的Hadoop MapReduce Fautht Porth策略导致计算作业在故障恢复过程中患有高性能损失。在本文中,我们提出了快速恢复MapReduce(FAR-MR),以提高MapReduce在故障恢复中的性能。 FAR-MR包括一种新颖的容错策略,它结合了分布式检查点和主动推送机制,以支持任务故障和节点故障的快速恢复。通过分布式检查点,每个任务的计算进度会定期记录为检查点,并保存在分布式数据存储中。恢复的任务可以在故障恢复期间从分布式存储中获取失败任务的最后一次进度。另外,主动推送机制使得映射任务的计算结果能够主动地发送到托管的节点减少相同计算作业的任务。当发生故障时,可以通过REANGET任务将推送到减速器节点的部分输出结果而无需重新计算的必要性。 FAR-MR允许在群集中的任何节点上有效恢复失败的任务。在任务故障恢复和节点故障恢复的情况下,拟议的FAR-MR可以将计算作业性能高达62%和45%提高62%和45%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号