首页> 外文期刊>IEEE/ACM Transactions on Networking >Accurate and Fast Recovery of Network Monitoring Data: A GPU Accelerated Matrix Completion
【24h】

Accurate and Fast Recovery of Network Monitoring Data: A GPU Accelerated Matrix Completion

机译:准确快速地恢复网络监控数据:GPU加速矩阵完成

获取原文
获取原文并翻译 | 示例

摘要

Gaining a full knowledge of end-to-end network performance is important for some advanced network management and services. Although it becomes increasingly critical, end-to-end network monitoring usually needs active probing of the path and the overhead will increase quadratically with the number of network nodes. To reduce the measurement overhead, matrix completion is proposed recently to predict the end-to-end network performance among all node pairs by only measuring a small set of paths. Despite its potential, applying matrix completion to recover the missing data suffers from low recovery accuracy and long recovery time. To address the issues, we propose MC-GPU to exploit Graphics Processing Units (GPUs) to enable parallel matrix factorization for high-speed and highly accurate Matrix Completion. To well exploit the special architecture features of GPUs for both task independent and data-independent parallel task execution, we propose several novel techniques: similar OD (origin and destination) pairs reordering taking advantage of the locality-sensitive hash (LSH) functions, balanced matrix partition, and parallel matrix completion. We implement the proposed MC-GPU on the GPU platform and evaluate the performance using real trace data. We compare the proposed MC-GPU with the state of the art matrix completion algorithms, and our results demonstrate that MC-GPU can achieve significantly faster speed with high data recovery accuracy.
机译:充分了解端到端网络性能对于某些先进的网络管理和服务非常重要。虽然它变得越来越关键,但端到端网络监控通常需要对路径的主动探测,并且开销将以网络节点的数量向数增加。为了减少测量开销,最近提出了矩阵完成,以通过仅测量一小组路径来预测所有节点对中的端到端网络性能。尽管它有潜力,应用矩阵完成以恢复缺失的数据遭受低恢复精度和长期恢复时间。为了解决问题,我们提出了MC-GPU利用图形处理单元(GPU)来实现高速和高精度矩阵完成的并行矩阵分解。为了利用GPU的特殊架构特征,为两项任务独立和数据独立的并行任务执行,我们提出了几种新颖的技术:类似的OD(原点和目的地)对利用位置敏感的散列(LSH)功能来重新排序,平衡矩阵分区和并行矩阵完成。我们在GPU平台上实现了所提出的MC-GPU,并使用实际跟踪数据进行评估性能。我们将提议的MC-GPU与最先进的矩阵完成算法进行比较,我们的结果表明MC-GPU可以通过高数据恢复精度达到明显更快的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号