首页> 外文期刊>Journal of supercomputing >Learning shared subspace regularization with linear discriminant analysis for multi-label action recognition
【24h】

Learning shared subspace regularization with linear discriminant analysis for multi-label action recognition

机译:使用线性判别分析学习共享子空间正则化以进行多标签动作识别

获取原文
获取原文并翻译 | 示例

摘要

Human action recognition under complex environment is a challenging work, while in deep learning and in these specific difficulty recognition tasks, the multi-label linear discriminant analysis (MLDA) is already utilized. As is known to all, MLDA is used for dimensionality feature reduction. Nevertheless, MLDA contains the eigendecomposition of dense matrices, which will cost a huge money on a high dimension computing. In this study, we demonstrate that the MLDA formula is able to equivalent to the least squares problem, which greatly reduces the computation and size of high-dimensional datasets. In addition, it is found that introducing attractive regularization technique into the classical least squares strategy can improve the robustness. The established equivalence relationship is proved by laboratory results on three action datasets. In addition, through comparing with some typical and recent algorithms, the superiority of our constructed model is also demonstrated.
机译:复杂环境下的人类动作识别是一项具有挑战性的工作,而在深度学习和这些特定的困难识别任务中,已经使用了多标签线性判别分析(MLDA)。众所周知,MLDA用于降维特征。但是,MLDA包含密集矩阵的特征分解,这将在高维计算上花费大量资金。在这项研究中,我们证明了MLDA公式能够等效于最小二乘问题,从而极大地减少了高维数据集的计算量和大小。此外,发现将有吸引力的正则化技术引入经典最小二乘策略可以提高鲁棒性。在三个动作数据集上的实验室结果证明了已建立的等价关系。此外,通过与一些典型算法和最新算法进行比较,还证明了我们构建的模型的优越性。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第3期|2139-2157|共19页
  • 作者

  • 作者单位

    Dongguan Polytech Dongguan Guangdong Peoples R China;

    Taihu Univ Wuxi Sch Nursing Qianrong St 68 Wuxi 214064 Jiangsu Peoples R China;

    JiangNan Univ Lab Pattern Recognit & Computat Intelligence Wuxi Jiangsu Peoples R China;

    Dalingshan Peoples Hosp Dongguan Guangdong Peoples R China;

    Beijing Univ Posts & Telecommun Sch Econ & Management Beijing Peoples R China;

    Minist Land & Resources Key Lab Urban Land Resources Monitoring & Simulat Shenzhen Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Action recognition; Multi-label analysis problem; Regularization technique; High-dimensional data;

    机译:动作识别;多标签分析问题;正则化技术;高维数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号