首页> 外文期刊>Journal of supercomputing >WCP-RNN: a novel RNN-based approach for Bio-NER in Chinese EMRs Paper ID: FC_17_25
【24h】

WCP-RNN: a novel RNN-based approach for Bio-NER in Chinese EMRs Paper ID: FC_17_25

机译:WCP-RNN:一种基于RNN的中国EMR中生物NER的新颖方法论文ID:FC_17_25

获取原文
获取原文并翻译 | 示例

摘要

Deep learning has achieved remarkable success in a wide range of domains. However, it has not been comprehensively evaluated as a solution for the task of Chinese biomedical named entity recognition (Bio-NER). The traditional deep-learning approach for the Bio-NER task is usually based on the structure of recurrent neural networks (RNN) and only takes word embeddings into consideration, ignoring the value of character-level embeddings to encode the morphological and shape information. We propose an RNN-based approach, WCP-RNN, for the Chinese Bio-NER problem. Our method combines word embeddings and character embeddings to capture orthographic and lexicosemantic features. In addition, POS tags are involved as a priori word information to improve the final performance. The experimental results show our proposed approach outperforms the baseline method; the highest F-scores for subject and lesion detection tasks reach 90.36 and 90.48% with an increase of 3.10 and 2.60% compared with the baseline methods, respectively.
机译:深度学习在各个领域都取得了显著成功。但是,它尚未被全面评估为解决中国生物医学命名实体识别(Bio-NER)任务的解决方案。用于Bio-NER任务的传统深度学习方法通​​常基于递归神经网络(RNN)的结构,并且只考虑单词嵌入,而忽略字符级嵌入的价值来对形态和形状信息进行编码。我们针对中国Bio-NER问题提出了一种基于RNN的方法WCP-RNN。我们的方法结合了词嵌入和字符嵌入来捕获拼字和词汇语义特征。另外,POS标签作为先验词信息被包括以改善最终性能。实验结果表明,我们提出的方法优于基线方法。与基线方法相比,用于主题和病变检测任务的最高F分数分别达到90.36和90.48%,分别增加了3.10和2.60%。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第3期|1450-1467|共18页
  • 作者

  • 作者单位

    Beijing Univ Technol Sch Software Engn Beijing Engn Res Ctr IoT Software & Syst Beijing 100124 Peoples R China|Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol Beijing 100084 Peoples R China;

    Beijing Univ Technol Sch Software Engn Beijing 100124 Peoples R China;

    Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol Beijing 100084 Peoples R China;

    Vrije Univ Amsterdam Comp Sci Dept Amsterdam Netherlands;

    Chinese Acad Med Sci & Peking Union Med Coll Peking Union Med Coll Hosp Dept Endocrinol Beijing 100730 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bio-NER; RNN-based model; POS tags; Chinese EMRs;

    机译:生物NER基于RNN的模型;POS标签;中国电子病历;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号