首页> 外文期刊>Journal of supercomputing >Indexable sub-trajectory matching using multi-segment approximation: a partition-and-stitch framework
【24h】

Indexable sub-trajectory matching using multi-segment approximation: a partition-and-stitch framework

机译:使用多段逼近的可索引子轨迹匹配:分区和拼接框架

获取原文
获取原文并翻译 | 示例

摘要

With advances in base technologies for moving objects, many studies have been conducted on the construction of databases of the trajectories of moving objects, including the diverse applications related to the trajectories. Most previous studies deal with whole trajectory matching, which finds the trajectories T in the database similar to a given query trajectory Q 'as a whole.' However, we often want to find those T containing the sub-trajectories T-sub (subset of T) that are similar to Q. This problem is known as sub-trajectory matching and is more complicated than whole trajectory matching since the query trajectory Q can be of any length and the matching sub-trajectories T-sub can be at any position in the data trajectories T. In this paper, we present a novel indexing-based sub-trajectory matching algorithm using multi-segment approximation. Our algorithm partitions a data trajectory into multiple component segments and then stores the individual segments in an index. The query trajectory is also partitioned into its component segments, and the search for similar segments for each query segment is efficiently performed using the index. The sub-trajectories similar to the query trajectory are reconstructed by our 'stitching' algorithm using the individual segments retrieved from the index. Our stitching algorithm is novel and innovative in the sense that it facilitates segment-wise partitioning and indexing of data trajectories. Without stitching, only trajectory-wise operations would be affordable, which causes severe storage space overhead and degradation in search performance. Our study is the first that uses indexing in sub-trajectory matching. We define a (multi-segment) trajectory similarity measure that extends a widely used single-segment similarity measure proposed by Lee et al. (in: Proceedings of ACM SIGMOD international conference on management of data (SIGMOD), 2007; in: Proceedings of IEEE international conference on data engineering (ICDE), 2008; Proc VLDB Endow (PVLDB) 1(1):1081-1094, 2008) by using the Hausdorff distance. We perform extensive experiments to compare our method with EDS (Xie, in: Proceedings of ACM SIGMOD international conference on management of data (SIGMOD), 2014), which has been proved to outperform all representative point-based measures in terms of accuracy and performance. The accuracy of our similarity measure is better than EDS by up to 52.0%, and our algorithm significantly outperforms that using EDS by up to 22,543 times. The performance of our algorithm is linearly scalable in the size of the database, which is an essential property for handling large-scale databases.
机译:随着移动物体的基础技术的进步,已经对移动物体的轨迹的数据库的构造进行了许多研究,包括与该轨迹有关的各种应用。先前的大多数研究都涉及整个轨迹匹配,即在数据库中找到与给定查询轨迹Q“整体上”相似的轨迹T。但是,我们经常要查找包含与Q相似的子轨迹T-sub(T的子集)的那些T。此问题称为子轨迹匹配,并且由于查询轨迹Q而比整个轨迹匹配更复杂。子轨迹T-sub可以是任意长度,并且匹配子轨迹T-sub可以在数据轨迹T中的任意位置。在本文中,我们提出了一种使用多段逼近的新颖的基于索引的子轨迹匹配算法。我们的算法将数据轨迹划分为多个组成部分,然后将各个部分存储在索引中。查询轨迹也被划分为其组成部分,并且使用索引有效地执行针对每个查询部分的相似部分的搜索。我们的“拼接”算法使用从索引中检索的各个片段,来重建与查询轨迹相似的子轨迹。我们的拼接算法在促进数据轨迹的分段分割和索引方面具有新颖性和创新性。如果不进行拼接,则仅按轨迹进行操作是可以负担的,这会导致严重的存储空间开销并降低搜索性能。我们的研究是第一个在子轨迹匹配中使用索引的研究。我们定义了(多段)轨迹相似性度量,该度量扩展了Lee等人提出的广泛使用的单段相似性度量。 (in:ACM SIGMOD国际数据管理国际会议论文集(SIGMOD),2007; in:IEEE国际数据工程国际会议论文集(ICDE),2008; Proc VLDB Endow(PVLDB)1(1):1081-1094, 2008年),使用Hausdorff距离。我们进行了广泛的实验以将我们的方法与EDS进行比较(Xie,在:ACM SIGMOD国际数据管理会议论文集(SIGMOD),2014年),事实证明,该方法在准确性和性能方面均优于所有基于点的代表性指标。我们的相似性度量方法的准确性比EDS高出52.0%,并且我们的算法明显优于使用EDS的算法,相差22,543倍。我们算法的性能在数据库的大小上是线性可伸缩的,这对于处理大型数据库是必不可少的属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号