首页> 外文期刊>Journal of supercomputing >A formally based parallelization of data mining algorithms for multi-core systems
【24h】

A formally based parallelization of data mining algorithms for multi-core systems

机译:基于形式的多核系统数据挖掘算法的并行化

获取原文
获取原文并翻译 | 示例

摘要

We describe a novel, systematic approach to efficiently parallelizing datamining algorithms: starting with the representation of an algorithm as a sequential composition of functions, we formally transform it into a parallel form using higher-order functions for specifying parallelism. We implement the approach as an extension of the industrial-strength Java-based library Xelopes, and we illustrate its use by developing a multi-threaded Java program for the popular naive Bayes classification algorithm. In comparison with the popular MapReduce programming model, our resulting programs enable not only data-parallel, but also task-parallel implementation and a combination of both. Our experiments demonstrate an efficient parallelization and good scalability on multi-core processors.
机译:我们描述了一种有效地并行化数据挖掘算法的新颖系统方法:从将算法表示为功能的顺序组成开始,我们使用高阶函数将其形式化为并行形式,以指定并行性。我们将这种方法实现为基于工业强度的Java库Xelopes的扩展,并通过为流行的朴素贝叶斯分类算法开发多线程Java程序来说明其用法。与流行的MapReduce编程模型相比,我们生成的程序不仅支持数据并行,而且还支持任务并行实现以及两者的结合。我们的实验证明了在多核处理器上的有效并行化和良好的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号