首页> 外文期刊>Journal of supercomputing >Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology
【24h】

Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology

机译:计算系统生物学中混合整数动态优化问题的混合并行多方法超启发式

获取原文
获取原文并翻译 | 示例

摘要

This paper describes and assesses a parallel multimethod hyperheuristic for the solution of complex global optimization problems. In a multimethod hyperheuristic, different metaheuristics cooperate to outperform the results obtained by any of them isolated. The results obtained show that the cooperation of individual parallel searches modifies the systemic properties of the hyperheuristic, achieving significant performance improvements versus the sequential and the non-cooperative parallel solutions. Here we present and evaluate a hybrid parallel scheme of the multimethod, using both message-passing (MPI) and shared memory (OpenMP) models. The hybrid parallelization allows to achieve a better trade-off between performance and computational resources, through a compromise between diversity (number of islands) and intensity (number of threads per island). For the performance evaluation, we considered the general problem of reverse engineering nonlinear dynamic models in systems biology, which yields very large mixed-integer dynamic optimization problems. In particular, three very challenging problems from the domain of dynamic modeling of cell signaling were used as case studies. In addition, experiments have been carried out in a local cluster, a large supercomputer and a public cloud, to show the suitability of the proposed solution in different execution platforms.
机译:本文描述并评估了一种并行的多方法超启发式方法,用于解决复杂的全局优化问题。在多方法超启发式方法中,不同的元启发式方法协同工作,其性能优于任何一个孤立的方法。获得的结果表明,单个并行搜索的协作修改了超启发式方法的系统属性,与顺序和非协作并行解决方案相比,实现了显着的性能改进。在这里,我们使用消息传递(MPI)模型和共享内存(OpenMP)模型来提出和评估多方法的混合并行方案。通过在多样性(孤岛数)和强度(每个孤岛的线程数)之间进行折衷,混合并行化允许在性能和计算资源之间实现更好的折衷。为了进行性能评估,我们考虑了系统生物学中逆向工程非线性动力学模型的一般问题,这会产生非常大的混合整数动态优化问题。特别地,来自细胞信号的动态建模领域的三个非常具有挑战性的问题被用作案例研究。此外,已经在本地集群,大型超级计算机和公共云中进行了实验,以显示所提出的解决方案在不同执行平台上的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号