首页> 外文期刊>Journal of supercomputing >A hybrid data replication strategy with fuzzy-based deletion for heterogeneous cloud data centers
【24h】

A hybrid data replication strategy with fuzzy-based deletion for heterogeneous cloud data centers

机译:异构云数据中心基于模糊删除的混合数据复制策略

获取原文
获取原文并翻译 | 示例

摘要

At present, huge cloud-based applications have put forward higher requests for data center storage. In a large-scale Cloud environment, data replication provides an appropriate solution for managing data files, which improves data reliability and availability. In this paper, we propose a data replication algorithm called hybrid replication strategy (HRS) that is applied into replica placement, selection, and replacement steps. HRS has three main phases and is suitable for replicating data files in cloud. In the first phase, it selects the best site (i.e., that is the most central site with high number of access) for storing new replica to reduce access time. In the second phase, HRS considers the best replica node for users based on different parameters such as CPU process capability, network transmission capability, I/O capability of disks, load, and network latency. In the third phase, the replacement decision is made in order to provide better response time. HRS can ascertain the importance of valuable replicas on the basis of a fuzzy inference system with three input parameters (i.e., number of accesses, cost, and the last time the replica was accessed). The new replication policy is simulated using the CloudSim toolkit package. Our proposed mechanism replicates the data over the cloud nodes reasonably well and is easily implementable in a real environment. Experiment results prove that HRS can significantly enhance availability, performance and load balance for data-intensive applications. In addition, it stands good without increasing additional overheads.
机译:当前,巨大的基于云的应用程序对数据中心存储提出了更高的要求。在大规模的云环境中,数据复制提供了用于管理数据文件的适当解决方案,从而提高了数据的可靠性和可用性。在本文中,我们提出了一种称为混合复制策略(HRS)的数据复制算法,该算法可应用于副本的放置,选择和替换步骤。 HRS具有三个主要阶段,适用于在云中复制数据文件。在第一阶段,它选择最佳站点(即访问量最高的最中央站点)来存储新副本,以减少访问时间。在第二阶段,HRS根据不同的参数(例如CPU处理能力,网络传输能力,磁盘的I / O能力,负载和网络延迟),为用户考虑最佳的副本节点。在第三阶段,做出更换决定以提供更好的响应时间。 HRS可以在具有三个输入参数(即访问次数,成本和上次访问副本的时间)的模糊推理系统的基础上,确定有价值的副本的重要性。使用CloudSim工具包软件包对新的复制策略进行了模拟。我们提出的机制可以很好地在云节点上复制数据,并且可以在实际环境中轻松实现。实验结果证明,HRS可以显着提高数据密集型应用程序的可用性,性能和负载平衡。另外,它在不增加额外开销的情况下也很好。

著录项

  • 来源
    《Journal of supercomputing》 |2018年第10期|5349-5372|共24页
  • 作者

    N. Mansouri; M. M. Javidi;

  • 作者单位

    Department of Computer Science, Shahid Bahonar University of Kerman,Mahani Mathematical Research Center, Shahid Bahonar University of Kerman;

    Department of Computer Science, Shahid Bahonar University of Kerman,Mahani Mathematical Research Center, Shahid Bahonar University of Kerman;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Replication; CloudSim; Fuzzy system;

    机译:云计算;复制;CloudSim;模糊系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号