首页> 外文期刊>Journal of supercomputing >An efficient cascaded method for network intrusion detection based on extreme learning machines
【24h】

An efficient cascaded method for network intrusion detection based on extreme learning machines

机译:一种基于极限学习机的高效的网络入侵检测级联方法

获取原文
获取原文并翻译 | 示例

摘要

Machine learning techniques are widely used for network intrusion detection (NID). However, it has to face the unbalance of training samples between classes as it is hard to collect samples of some intrusion classes. This would produce false positives for these intrusion classes. Meanwhile, since there are various types of intrusions, classification boundaries between different classes are seriously nonlinear. Due to the huge amount of training data, computational efficiency is also required. This paper therefore proposes an efficient cascaded classifier for NID. This classifier consists of a collection of binary base classifiers which are serially connected. Each base classifier corresponds to a type of intrusion. The order of these base classifiers is automatically determined based on the number of false positives to cope with the unbalance of training samples. Extreme learning machine algorithm, which has low computational cost, is used to train these base classifiers to delineate the nonlinear boundaries between classes. This proposed NID method is evaluated on the KDD99 data set. Experimental results have shown that this proposed method outperforms other state-of-the-art methods including decision tree, back-propagation neural network and support vector machines.
机译:机器学习技术被广泛用于网络入侵检测(NID)。但是,由于很难收集某些入侵类的样本,因此必须面对各类之间的训练样本的不平衡。对于这些入侵类别,这将产生误报。同时,由于存在各种类型的入侵,因此不同类别之间的分类边界是严重的非线性。由于训练数据量巨大,因此还需要计算效率。因此,本文提出了一种有效的NID级联分类器。该分类器由一系列串行连接的二进制基本分类器组成。每个基本分类器对应于一种入侵类型。这些基础分类器的顺序是根据误报的数量自动确定的,以应对训练样本的不平衡情况。具有极低计算成本的极限学习机算法用于训练这些基本分类器来描绘类之间的非线性边界。在KDD99数据集上评估了此提议的NID方法。实验结果表明,该方法优于其他最新方法,包括决策树,反向传播神经网络和支持向量机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号