首页> 外文期刊>Journal of supercomputing >Performance evaluation of enhancement of the layered self-scheduling approach for heterogeneous multicore cluster systems
【24h】

Performance evaluation of enhancement of the layered self-scheduling approach for heterogeneous multicore cluster systems

机译:异构多核集群系统分层自调度方法的增强性能评估

获取原文
获取原文并翻译 | 示例

摘要

Previously we have proposed a Layered Self-Scheduling (LSS) approach that is a hybrid MPI and OpenMP based loop self-scheduling approach for dealing with the heterogeneity problem on a cluster system consisting of multi-core compute nodes, where the allocation functions of several well-known schemes have been modified for better performance. Though LSS provides better performance than the conventional self-scheduling schemes, we found the performance can be improved further after our comprehensive experiments and analyses. The newly proposed task scheduling strategy, called Enhanced Layered Self-Scheduling (ELSS), aims at how to utilize the compute powers of multiple processor cores more efficiently in the master compute node and how to schedule tasks to have more stable performance improvements. We have evaluated the new task scheduling strategy by three benchmark applications: Matrix Multiplication, Monte Carlo Integration, and Mandelbrot Set Computation. It is recommended that the global scheduler adopts Guided Self-Scheduling (GSS) for all, and the local scheduler adopts the static scheme for applications with regular workload distribution but any scheme for applications with irregular workload distribution. Experimental results show the best speedups obtained by ELSS for the three benchmark programs are 1.373, 13.34 and 2.4, respectively, compared with that scheduled by LSS.
机译:以前,我们已经提出了一种分层自调度(LSS)方法,它是一种基于MPI和OpenMP的混合循环自调度方法,用于处理由多核计算节点组成的集群系统上的异构性问题,其中几个分配功能众所周知的方案已被修改以获得更好的性能。尽管LSS提供了比常规自调度方案更好的性能,但是我们发现,经过全面的实验和分析,性能可以进一步提高。新提出的任务调度策略称为增强型分层自调度(ELSS),旨在如何在主计算节点中更有效地利用多个处理器内核的计算能力,以及如何调度任务以实现更稳定的性能改进。我们已经通过三个基准应用程序评估了新的任务调度策略:矩阵乘法,蒙特卡洛积分和曼德尔布罗特集计算。建议全局调度程序全部采用引导式自调度(GSS),本地调度程序对于具有规则工作负载分配的应用程序采用静态方案,而对于具有不规则工作负载分配的应用程序则采用任何方案。实验结果表明,与LSS计划的相比,ELSS获得的三个基准程序的最佳加速分别为1.373、13.34和2.4。

著录项

  • 来源
    《Journal of supercomputing》 |2012年第1期|p.399-430|共32页
  • 作者单位

    Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua 500, Taiwan;

    Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua 500, Taiwan;

    Department of Biotechnology, MingDao University, Changhua, Taiwan;

    Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua 500, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cluster systems; self-scheduling; MPI; OpenMP; multicore processor;

    机译:集群系统;自我安排;MPI;OpenMP;多核处理器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号