首页> 外文期刊>Concurrency and computation: practice and experience >An approach to enhance the performance of large‐scalernstructural analysis on CPU‐MIC heterogeneous clusters
【24h】

An approach to enhance the performance of large‐scalernstructural analysis on CPU‐MIC heterogeneous clusters

机译:一种增强CPU-MIC异构集群的大规模结构分析性能的方法

获取原文
获取原文并翻译 | 示例

摘要

Clusters with the CPU‐MIC heterogeneous architecture are becoming more popular in recentrnyears. However, it is not easy to achieve good performance on such machines. The key challengernhas been the asymmetry within clusters, arising from different kinds of execution units as well asrndifferent communication latencies. To improve the performance of large‐scale structural analysisrnon CPU‐MIC heterogeneous clusters, a multi‐layer and multi‐grain collaborative parallel computingrnapproach is proposed in the paper. The proposed method combines the parallel algorithm andrnthe hardware architecture of CPU‐MIC heterogeneous clusters together. Through mappingrncomputing tasks to various hardware layers, it both resolves the load balance problem betweenrnCPU and MIC devices and significantly reduces the communication overheads of the system.rnNumerical experiments conducted on Tianhe‐2 supercomputer show that the proposed methodrnobtained better performance compared with the traditional approach. Scalability investigationrnshowed that the proposed method had good scalability with respect to problem sizes. The findingsrnof this paper are of help to the parallel porting and performance optimization of other applicationsrnon CPU‐MIC heterogeneous clusters.
机译:近年来,具有CPU-MIC异构体系结构的群集变得越来越流行。但是,在这样的机器上实现良好的性能并不容易。关键的挑战是集群内部的不对称性,它是由不同类型的执行单元以及不同的通信延迟引起的。为了提高非CPU-MIC异构集群的大规模结构分析性能,本文提出了一种多层,多粒度的协同并行计算方法。所提出的方法将并行算法与CPU-MIC异构集群的硬件架构结合在一起。通过将计算任务映射到各个硬件层,既解决了CPU与MIC设备之间的负载平衡问题,又显着降低了系统的通信开销。在天河2号超级计算机上进行的数值实验表明,与传统方法相比,该方法具有更好的性能。可伸缩性研究表明,该方法在问题规模方面具有良好的可伸缩性。本文的发现对非CPU-MIC异构集群的其他应用程序的并行移植和性能优化有帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号