首页> 外文期刊>Journal of supercomputing >A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs
【24h】

A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs

机译:一种基于学习自动机的启发式算法,用于求解随机图中的最小生成树问题

获取原文
获取原文并翻译 | 示例

摘要

During the last decades, a host of efficient algorithms have been developed for solving the minimum spanning tree problem in deterministic graphs, where the weight associated with the graph edges is assumed to be fixed. Though it is clear that the edge weight varies with time in realistic applications and such an assumption is wrong, finding the minimum spanning tree of a stochastic graph has not received the attention it merits. This is due to the fact that the minimum spanning tree problem becomes incredibly hard to solve when the edge weight is assumed to be a random variable. This becomes more difficult if we assume that the probability distribution function of the edge weight is unknown. In this paper, we propose a learning automata-based heuristic algorithm to solve the minimum spanning tree problem in stochastic graphs wherein the probability distribution function of the edge weight is unknown. The proposed algorithm taking advantage of learning automata determines the edges that must be sampled at each stage. As the presented algorithm proceeds, the sampling process is concentrated on the edges that constitute the spanning tree with the minimum expected weight. The proposed learning automata-based sampling method decreases the number of samples that need to be taken from the graph by reducing the rate of unnecessary samples. Experimental results show the superiority of the proposed algorithm over the well-known existing methods both in terms of the number of samples and the running time of algorithm.
机译:在最近的几十年中,已经开发出许多有效的算法来解决确定性图中的最小生成树问题,在确定性图中假定与图边缘相关的权重是固定的。尽管很明显,在实际应用中边缘权重会随时间变化,并且这样的假设是错误的,但是找到随机图的最小生成树并没有受到应有的重视。这是由于以下事实:当假定边缘权重为随机变量时,最小生成树问题变得难以解决。如果我们假设边缘权重的概率分布函数未知,这将变得更加困难。在本文中,我们提出了一种基于学习自动机的启发式算法,以解决边缘权重的概率分布函数未知的随机图中的最小生成树问题。所提出的算法利用学习自动机的优势,确定了每个阶段必须采样的边缘。随着提出的算法的进行,采样过程集中在以最小预期权重构成生成树的边缘上。所提出的基于自动机的学习采样方法通过减少不必要的采样率来减少需要从图中获取的采样数量。实验结果表明,该算法在样本数量和算法运行时间上均优于现有的算法。

著录项

  • 来源
    《Journal of supercomputing》 |2012年第2期|p.1035-1054|共20页
  • 作者单位

    Department of Computer Engineering, Islamic Azad University, Arak Branch, Arak, Iran;

    Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran,Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Computer Science, Tehran, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    learning automata; minimum spanning tree; stochastic graph;

    机译:学习自动机最小生成树随机图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号