首页> 外文期刊>Journal of supercomputing >Exploiting inter-operation parallelism for matrix chain multiplication using MapReduce
【24h】

Exploiting inter-operation parallelism for matrix chain multiplication using MapReduce

机译:使用MapReduce利用互操作并行性进行矩阵链乘法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the matrix chain multiplication problem, i.e., the multiplication of several matrices. Although several studies have investigated the problem, our approach has some different points. First, we propose MapReduce algorithms that allow us to provide scalable computation for large matrices. Second, we transform the matrix chain multiplication problem from sequential multiplications of two matrices into a single multiplication of several matrices. Since matrix multiplication is associative, this approach helps to improve the performance of the algorithms. To implement the idea, we adopt multi-way join algorithms in MapReduce that have been studied in recent years. In our experiments, we show that the proposed algorithms are fast and scalable, compared to several baseline algorithms.
机译:在本文中,我们解决了矩阵链乘法问题,即几个矩阵的乘法。尽管有几项研究调查了此问题,但我们的方法有一些不同之处。首先,我们提出MapReduce算法,该算法允许我们为大型矩阵提供可伸缩的计算。第二,我们将矩阵链乘法问题从两个矩阵的顺序乘法转换为几个矩阵的单个乘法。由于矩阵乘法是关联的,因此该方法有助于提高算法的性能。为了实现这一想法,我们在MapReduce中采用了近年来研究的多路联接算法。在我们的实验中,我们表明与几种基准算法相比,所提出的算法是快速且可扩展的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号