首页> 外文期刊>Journal of supercomputing >A study on framework for effective R&D performance analysis of Korea using the Bayesian network and pairwise comparison of AHP
【24h】

A study on framework for effective R&D performance analysis of Korea using the Bayesian network and pairwise comparison of AHP

机译:利用贝叶斯网络和AHP的成对比较对韩国进行有效R&D绩效分析的框架研究

获取原文
获取原文并翻译 | 示例

摘要

To effectively evaluate and analyze R&D performance, it is necessary to measure the relative importance of performance analysis factors and quantitative analysis methods that consider the objectivity and relevance of detail factors that constitute performance evaluation.This study suggests a framework for R&D performance evaluations by computing weights through an AHP (Analytical Hierarchy Process) expert survey and by applying a Bayesian Network approach whereby, through which, giving objectivity and allowing inference analyses. This framework can be used as a performance analysis indicator, which uses input and output performance factors in order to perform quantitative analysis for projects. We can quantitatively define the satisfactory level of each project and each performance analysis factor by assigning probability values. It is possible to analyze the relationship between project evaluation results (qualitative evaluation) and performance analysis indicator (quantitative performance). This performance analysis framework can infer posteriori probability using the prior probability and the likelihood function of each performance factor. In addition, by infer-ring the relationships among performance factors, it allows performing probability analyses on the successful and unsuccessful factors, which can provide further feedback.In conclusion, the framework would improve the national R&D program in terms of financial investment efficiency by aligning budget allocation and performance evaluation.
机译:为了有效地评估和分析R&D绩效,有必要衡量绩效分析因素和定量分析方法的相对重要性,这些方法应考虑构成绩效评估的细节因素的客观性和相关性。本研究通过计算权重为R&D绩效评估提供了框架通过AHP(分析层次结构)专家调查,并通过贝叶斯网络方法进行分析,从而给出客观性并允许进行推理分析。该框架可用作绩效分析指标,该指标使用输入和输出绩效因子来对项目进行定量分析。通过分配概率值,我们可以定量定义每个项目的满意水平和每个性能分析因子。可以分析项目评估结果(定性评估)和绩效分析指标(定量绩效)之间的关系。该性能分析框架可以使用每个性能因子的先验概率和似然函数来推断后验概率。此外,通过推断绩效因素之间的关系,它可以对成功和不成功因素进行概率分析,从而可以提供进一步的反馈。总之,该框架将通过调整金融投资效率来改善国家研发计划预算分配和绩效评估。

著录项

  • 来源
    《Journal of supercomputing》 |2013年第2期|593-611|共19页
  • 作者单位

    Center of R&D Feasibility Analysis, Korea Institute of S&T Evaluation and Planning, Seoul, Korea;

    Division of R&D Results Diffusion, Korea Institute of S&T Evaluation and Planning, Seoul, Korea;

    Division of Knowledge & Information, Korea Institute of S&T Evaluation and Planning, Seoul,Korea;

    Team of Panning, Korea Institute of S&T Evaluation and Planning, Seoul, Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian network; Inference; AHP; Performance analysis; Performance indicator;

    机译:贝叶斯网络;推论;层次分析法;绩效分析;绩效指标;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号