首页> 外文期刊>Journal of supercomputing >SkelCL: a high-level extension of OpenCL for multi-GPU systems
【24h】

SkelCL: a high-level extension of OpenCL for multi-GPU systems

机译:SkelCL:针对多GPU系统的OpenCL的高级扩展

获取原文
获取原文并翻译 | 示例

摘要

Application development for modern high-performance systems with graphics processing units (GPUs) currently relies on low-level programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs. We present SkelCL-a high-level programming approach for systems with multiple GPUs and its implementation as a library on top of OpenCL. SkelCL makes three main enhancements to the OpenCL standard: (1) memory management is simplified using parallel container data types (vectors and matrices);(2) an automatic data (re)distribution mechanism allows for implicit data movements between GPUs and ensures scalability when using multiple GPUs; (3) computations are conveniently expressed using parallel algorithmic patterns (skeletons). We demonstrate how SkelCL is used to implement parallel applications, and we report experimental evaluation of our approach in terms of programming effort and performance.
机译:当前,具有图形处理单元(GPU)的现代高性能系统的应用程序开发依赖于CUDA和OpenCL之类的低级编程方法,这会导致程序复杂,冗长且容易出错。我们介绍SkelCL-一种针对具有多个GPU的系统的高级编程方法,并将其实现为OpenCL之上的库。 SkelCL对OpenCL标准进行了三项主要增强:(1)使用并行容器数据类型(向量和矩阵)简化了内存管理;(2)自动数据(重新)分配机制允许GPU之间的隐式数据移动,并确保可扩展性使用多个GPU; (3)使用并行算法模式(骨架)方便地表示计算。我们演示了如何使用SkelCL来实现并行应用程序,并且我们在编程工作量和性能方面报告了对我们方法的实验评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号