首页> 外文期刊>Journal of supercomputing >Model-based energy-aware data movement optimization in the storage I/O stack
【24h】

Model-based energy-aware data movement optimization in the storage I/O stack

机译:存储I / O堆栈中基于模型的能源感知数据移动优化

获取原文
获取原文并翻译 | 示例

摘要

The increasing data demands of applications from various domains and the decreasing relative power cost of CPU computation have gradually exposed data movement cost as the prominent factor of energy consumption in computing systems. The traditional organization of the computer system software into a layered stack, while providing a straightforward modularity, poses a significant challenge for the global optimization of data movement in particular and, thus, the energy efficiency in general. Optimizing the energy efficiency of data movement in large-scale systems is a difficult tasks because it depends on a complex interplay of various factors at different system layers. In this work, we address the challenge of optimizing the data movement of the storage I/O stack in a holistic manner. Our approach consists of a model-based system driver that obtains the current I/O power regime and adapts the CPU frequency level according to this information. On the one hand, for simplifying the understanding of the relation between data movement and energy efficiency, this paper proposes novel energy prediction models for data movement based on series of runtime metrics from several I/O stack layers. We provide an in-depth study of the energy consumption in the data path, including the identification and analysis of power and performance regimes that synthesize the energy consumption patterns in a cross-layer approach. On the other hand, we propose and prototype a kernel driver that exploits data movement awareness for improving the current CPU-centric energy management.
机译:来自各个领域的应用程序对数据的需求不断增长,以及CPU计算的相对功耗降低,已逐渐暴露出数据移动成本已成为计算系统能耗的主要因素。传统的将计算机系统软件组织到分层堆栈中的过程,虽然提供了直接的模块化功能,但对数据移动的全局优化(尤其是总体能源效率)提出了重大挑战。在大型系统中,优化数据移动的能源效率是一项艰巨的任务,因为它取决于不同系统层上各种因素的复杂相互作用。在这项工作中,我们解决了以整体方式优化存储I / O堆栈的数据移动的挑战。我们的方法包括一个基于模型的系统驱动程序,该驱动程序获取当前的I / O功率状态并根据此信息调整CPU频率级别。一方面,为了简化对数据移动与能源效率之间关系的理解,本文基于来自多个I / O堆栈层的一系列运行时指标,提出了用于数据移动的新型能源预测模型。我们对数据路径中的能耗进行了深入研究,包括对功率和性能方案的识别和分析,这些性能和性能方案以跨层方法综合了能耗模式。另一方面,我们提出并原型化了一个内核驱动程序,该程序利用数据移动感知来改善当前以CPU为中心的能源管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号