首页> 外文期刊>Journal of supercomputing >A multi-parameter scheduling method of dynamic workloads for big data calculation in cloud computing
【24h】

A multi-parameter scheduling method of dynamic workloads for big data calculation in cloud computing

机译:云计算中用于大数据计算的动态工作负载的多参数调度方法

获取原文
获取原文并翻译 | 示例

摘要

Workload scheduling in cloud computing is currently an active research field. Scheduling plays an important role in cloud computing performance, especially when the platform is used for big data analysis and as less predictable workloads dynamically enter the clouds. Finding the optimized scheduling solution with different parameters in different environments is still a challenging issue. In dynamic environments such as cloud, scheduling strategies should feature rapid altering to be able to adapt more easily to the changes in input workloads. However, achieving an optimized solution is an important issue, which has a trade-off with the speed of finding the solution. In this article, an ordinal optimization method is proposed that considers the volume of workloads, load balancing and the volume of exchanged messages among virtual clusters, considering the replications. The algorithm in the present paper is based on ordinal optimization (OO) and evolutionary OO. In any time periods, a criterion is calculated to determine the similarity of workloads in two-consequence time periods, which is appropriate for timely changes in the scheduling procedure. In this paper, considering more than one parameter, a proper scheduling would be created for each time period. This scheduler is an organization for the number of virtual machines for each virtual cluster, but if there is a desirable similarity between workloads of two-consequence time periods, this procedure would be ignored. The results show that a more optimized solution is obtained in comparison with the rated methods, such as blind pink, OO, Monte Carlo and eOO in a reasonable time. The suggested method is flexible and it is possible to change the weight ratio of the proposed criteria in different environments to be consistent with different environmental conditions. The results show that proposed method achieved up to 28% performance improvement in comparison with eOO.
机译:云计算中的工作负载调度目前是一个活跃的研究领域。调度在云计算性能中起着重要作用,尤其是当该平台用于大数据分析并且可预测性较低的工作负载动态进入云时。在不同环境中寻找具有不同参数的优化调度解决方案仍然是一个具有挑战性的问题。在动态环境(如云)中,调度策略应具有快速更改功能,以便能够更轻松地适应输入工作负载的变化。但是,实现优化的解决方案是一个重要的问题,它与找到解决方案的速度之间存在权衡。在本文中,提出了一种顺序优化方法,该方法考虑了工作量,负载平衡以及虚拟集群之间交换消息的数量,并考虑了复制。本文中的算法基于有序优化(OO)和进化型OO。在任何时间段中,都会计算一个标准以确定两个结果时间段中工作负载的相似性,这适用于计划过程中的及时更改。在本文中,考虑多个参数,将为每个时间段创建适当的调度。该调度程序是每个虚拟集群的虚拟机数量的组织,但是如果两个结果时间段的工作负载之间存在理想的相似性,则将忽略此过程。结果表明,在合理的时间内,与盲法,OO,蒙特卡洛和eOO等额定方法相比,获得了更优化的解决方案。所提出的方法是灵活的,并且可以在不同的环境中改变所提出的标准的重量比以与不同的环境条件相一致。结果表明,与eOO相比,该方法的性能提高了28%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号