首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Evolutionary Scheduling of Dynamic Multitasking Workloads for Big-Data Analytics in Elastic Cloud
【24h】

Evolutionary Scheduling of Dynamic Multitasking Workloads for Big-Data Analytics in Elastic Cloud

机译:弹性云中大数据分析的动态多任务工作负载的进化调度

获取原文
获取原文并翻译 | 示例

摘要

Scheduling of dynamic and multitasking workloads for big-data analytics is a challenging issue, as it requires a significant amount of parameter sweeping and iterations. Therefore, real-time scheduling becomes essential to increase the throughput of many-task computing. The difficulty lies in obtaining a series of optimal yet responsive schedules. In dynamic scenarios, such as virtual clusters in cloud, scheduling must be processed fast enough to keep pace with the unpredictable fluctuations in the workloads to optimize the overall system performance. In this paper, ordinal optimization using rough models and fast simulation is introduced to obtain suboptimal solutions in a much shorter timeframe. While the scheduling solution for each period may not be the best, ordinal optimization can be processed fast in an iterative and evolutionary way to capture the details of big-data workload dynamism. Experimental results show that our evolutionary approach compared with existing methods, such as Monte Carlo and Blind Pick, can achieve higher overall average scheduling performance, such as throughput, in real-world applications with dynamic workloads. Furthermore, performance improvement is seen by implementing an optimal computing budget allocating method that smartly allocates computing cycles to the most promising schedules.
机译:为大数据分析安排动态和多任务工作负载的计划是一个具有挑战性的问题,因为它需要大量的参数扫描和迭代。因此,实时调度对于增加多任务计算的吞吐量至关重要。困难在于获得一系列最佳但响应迅速的时间表。在动态场景(例如云中的虚拟集群)中,必须足够快地处理调度,以跟上工作负载中不可预测的波动,以优化整体系统性能。在本文中,介绍了使用粗糙模型和快速仿真进行的有序优化,以在更短的时间内获得次优解决方案。尽管每个时期的调度解决方案可能都不是最佳方案,但是可以以迭代和进化的方式快速处理序数优化,以捕获大数据工作负载动态的细节。实验结果表明,与具有动态工作负载的实际应用程序中的Monte Carlo和Blind Pick等现有方法相比,我们的进化方法可以实现更高的总体平均调度性能,例如吞吐量。此外,通过实现最佳计算预算分配方法可以看到性能的提高,该方法可以将计算周期智能地分配给最有希望的计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号