首页> 外文期刊>Journal of supercomputing >An enhanced active caching strategy for data-intensive computations in distributed GIS
【24h】

An enhanced active caching strategy for data-intensive computations in distributed GIS

机译:分布式GIS中用于数据密集型计算的增强型主动缓存策略

获取原文
获取原文并翻译 | 示例

摘要

Caching can prepare data for computational tasks in advance by tracking the requirements and behaviors of distributed geographical information systems to reduce network latency and improve computational performance. This paper presents an enhanced method to actively cache data for data-intensive computations that considers both data relationships and the timeliness of those relationships. First, the access correlations, the correlation steps and the times of the correlations are computed based on the behaviors of the computational tasks. Because the influence of historically accessed records will decrease gradually over time, only recently accessed records are used. To track changes in the relationships and prevent cache waste problems, each record is given a different age-based weight. A conditional caching probability can then be computed based on the timeliness relationships, which can be used to find the appropriate data to compute simultaneously. Finally, we present several experiments that compare the proposed method with techniques that use other data placement strategies, active caching strategies and passive caching algorithms. The results show that the proposed model has better performance than other algorithms in all respects. In addition, the proposed model results in a lower cache replacement ratio. The experiments with different data sets on different data scales indicate that the proposed algorithm can also be used in large-scale distributed environments.
机译:缓存可以通过跟踪分布式地理信息系统的需求和行为来提前准备用于计算任务的数据,以减少网络等待时间并提高计算性能。本文提出了一种增强的方法来主动缓存数据以进行数据密集型计算,该方法同时考虑了数据关系和这些关系的及时性。首先,基于计算任务的行为来计算访问相关性,相关步骤和相关时间。由于历史访问记录的影响将随着时间的推移逐渐减小,因此仅使用最近访问的记录。为了跟踪关系中的变化并防止缓存浪费问题,每条记录都有不同的基于年龄的权重。然后可以基于及时性关系来计算条件缓存概率,该条件关系概率可用于查找适当的数据以同时进行计算。最后,我们提出了几个实验,将提出的方法与使用其他数据放置策略,主动缓存策略和被动缓存算法的技术进行了比较。结果表明,所提出的模型在所有方面都比其他算法具有更好的性能。另外,提出的模型导致较低的缓存替换率。在不同数据规模上使用不同数据集进行的实验表明,该算法也可以在大规模分布式环境中使用。

著录项

  • 来源
    《Journal of supercomputing》 |2017年第10期|4324-4346|共23页
  • 作者单位

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China|Collaborat Innovat Ctr Geospatial Technol, Wuhan, Hubei, Peoples R China;

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China;

    Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China|Collaborat Innovat Ctr Geospatial Technol, Wuhan, Hubei, Peoples R China;

    Wuhan Univ, Int Sch Software, Dept Spatial Informat & Digital Technol, Wuhan, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active caching; Distributed computing; Data correlation; Spatial data; Distributed GIS;

    机译:主动缓存;分布式计算;数据关联;空间数据;分布式GIS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号