首页> 外文期刊>Journal of statistical computation and simulation >A fast adaptive Lasso for the cox regression via safe screening rules
【24h】

A fast adaptive Lasso for the cox regression via safe screening rules

机译:通过安全筛选规则进行COX回归的快速自适应套索

获取原文
获取原文并翻译 | 示例

摘要

Some interesting recent studies have shown that safe feature elimination screening algorithms are useful alternatives in solving large scale and/or ultra-high-dimensional Lasso-type problems. However, to the best of our knowledge, the plausibility of adapting the safe feature elimination screening algorithm to survival models is rarely explored. In this study, we first derive the safe feature elimination screening rule for adaptive Lasso Cox model. Then, using both simulated and real-world datasets, we demonstrate that the resulting algorithm can outperform Lasso Cox and adaptive Lasso Cox prediction methods in terms of its predictive performance. In addition to its good predictive performance, we illustrate that the proposed algorithm has a key computational advantage over the above competing methods in terms of computation efficiency.
机译:一些有趣的最近的研究表明,安全特征消除筛选算法是解决大规模和/或超高维拉索型问题的有用替代方案。 然而,据我们所知,很少探索适应安全功能消除筛选算法的合理性。 在这项研究中,我们首先推出了自适应套索Cox模型的安全功能消除筛选规则。 然后,使用模拟和现实世界数据集,我们证明了所得算法可以在其预测性能方面优于套索Cox和自适应套索Cox预测方法。 除了其良好的预测性能之外,我们说明了所提出的算法在计算效率方面具有通过上述竞争方法的关键计算优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号