首页> 外文期刊>Journal of statistical computation and simulation >Feature screening of quadratic inference functions for ultrahigh dimensional longitudinal data
【24h】

Feature screening of quadratic inference functions for ultrahigh dimensional longitudinal data

机译:超高尺寸纵向数据的二次推理功能的特征筛选

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with feature screening for the ultrahigh dimensional additive models with longitudinal data. The proposed method utilizes the quadratic inference functions to construct the marginal screening measurement, which takes the within-subject correlation into consideration and is more efficient and robust than some parametric model assumptions for the working covariance matrix in each subject or experimental unit. We also show that the proposed method enjoys the sure screening property under some regularity conditions. Monte Carlo simulation studies and a real data application are conducted to examine the performance of the proposed method.
机译:本文涉及具有纵向数据的超高尺寸添加剂模型的特征筛选。该方法利用二次推理功能来构建边缘筛选测量,这考虑了对象内相关性,并且比每个受试者或实验单元中的工作协方差矩阵的一些参数模型假设更有效和鲁棒。我们还表明,该方法在某些规则条件下享有确保筛选性质。 Monte Carlo仿真研究和实际数据应用程序进行检查以检查所提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号