首页> 外文期刊>Journal of statistical computation and simulation >Bayesian inference for mixtures of von Mises distributions using reversible jump MCMC sampler
【24h】

Bayesian inference for mixtures of von Mises distributions using reversible jump MCMC sampler

机译:使用可逆跳转MCMC采样器对VON MISS分布的混合物的贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

Circular data are encountered in a variety of fields. A dataset on music listening behaviour throughout the day motivates development of models for multi-modal circular data where the number of modes is not known a priori. To fit a mixture model with an unknown number of modes, the reversible jump Metropolis-Hastings MCMC algorithm is adapted for circular data and presented. The performance of this sampler is investigated in a simulation study. At small-to-medium sample sizes , the number of components is uncertain. At larger sample sizes the estimation of the number of components is accurate. Application to the music listening data shows interpretable results that correspond with intuition.
机译:在各种领域中遇到循环数据。在全天内的音乐聆听行为的数据集促使开发用于多模态圆形数据的模型,其中模式的数量不知道先验。为了用未知数量的模式拟合混合模型,可逆跳转Metropolis-Hastings MCMC算法适用于循环数据并呈现。在模拟研究中调查了该采样器的性能。在小于介质的样本尺寸,部件的数量是不确定的。在较大的样本尺寸下,组件数量的估计是准确的。应用于音乐侦听数据,显示了与直觉相对应的解释结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号