首页> 外文期刊>Journal of statistical computation and simulation >A modified information criterion for tuning parameter selection in 1d fused LASSO for inference on multiple change points
【24h】

A modified information criterion for tuning parameter selection in 1d fused LASSO for inference on multiple change points

机译:用于在多个变化点的1D熔融套索中调整参数选择的修改信息标准

获取原文
获取原文并翻译 | 示例

摘要

Inference about multiple change points has been an interesting topic in the statistics literature. Recently, the high throughput technologies became the most popularly used tools in genomic studies and yielded massive data. In particular, when the concern is searching for heterogenous segments in a massive data set, it becomes an interesting problem in statistical change point analysis. That is, one tries to determine if there are multiple change points that separate the data into different parts. Such data have a 'sparsity' feature (within each part, the data points are homogenous), and hence penalized regression, such as the 1d fused LASSO, has been recently used for detecting multiple change points in high throughput data. One of the main challenges for detecting change points is to estimate the number of change points which then becomes the problem of how to select an optimal tuning parameter in the LASSO methods for change point problems. Therefore, in this work, we propose to use a modified Bayesian information criterion to estimate the optimal tuning parameter in the 1d fused LASSO for multiple change points detection. We show theoretically that the proposed JMIC consistently identifies the true number of change points via providing the optimal tuning parameter for 1d fused LASSO. Simulation studies and application to a next-generation sequencing data of a breast cancer tumour cell line illustrated the usefulness of the proposed method.
机译:关于多个变化点的推断是统计文献中的一个有趣的话题。最近,高吞吐量技术成为基因组研究中最普遍的使用工具,并产生了大量数据。特别是,当关注在大规模数据集中搜索异构段时,它成为统计变化点分析中的一个有趣问题。也就是说,一个人试图确定是否有多个更改点,可将数据分成不同的部件。这些数据具有“稀疏性”特征(在每个部分内,数据点是均匀的),并且因此最近用于检测高吞吐量数据中的多个变化点的惩罚回归(例如1D熔融索索)。检测变化点的主要挑战之一是估计那么改变点的数量,然后成为如何在套索方法中选择更改点问题的最佳调谐参数的问题。因此,在这项工作中,我们建议使用修改后的贝叶斯信息标准来估算1D融合套索中的最佳调谐参数,以进行多个变化点检测。理论上,我们在理论上显示了所提出的JMIC通过为1D熔融套索提供最佳调谐参数,始终如一地识别真正的变化点。仿真研究和应用于乳腺癌肿瘤细胞系的下一代测序数据示出了所提出的方法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号