首页> 外文期刊>Journal of statistical computation and simulation >Robust model-free feature screening for ultrahigh dimensional surrogate data
【24h】

Robust model-free feature screening for ultrahigh dimensional surrogate data

机译:强大的无模型特征筛选功能,可处理超高维替代数据

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the feature screening for the ultrahigh dimensional data with covariates missing at random, and some surrogate variables are available. We propose a marginal screening procedure based on the augmented inverse probability weighted methods and the nonparametric imputation technique. Our proposed screening method utilizes the surrogate information efficiently to overcome the missing data problem. It is model free and possesses the sure screening property under some regular conditions. Monte Carlo simulation studies and a real data application are conducted to examine the performance of the proposed procedure.
机译:本文涉及随机协变量缺失的超高维数据的特征筛选,并且一些替代变量可用。我们提出了一种基于增量逆概率加权方法和非参数归因技术的边际筛选程序。我们提出的筛选方法有效地利用替代信息来克服数据丢失的问题。它是无模型的,并且在某些常规条件下具有确定的筛选属性。进行了蒙特卡洛模拟研究和实际数据应用,以检验所提出程序的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号