首页> 外文期刊>Journal of statistical computation and simulation >R package for analysis of data with mixed measurement error and misclassification in covariates: augSIMEX
【24h】

R package for analysis of data with mixed measurement error and misclassification in covariates: augSIMEX

机译:R包,用于分析具有混合测量误差和协变量错误分类的数据:augSIMEX

获取原文
获取原文并翻译 | 示例

摘要

Measurement error and misclassification arise commonly in various data collection processes. It is well-known that ignoring these features in the data analysis usually leads to biased inference. With the generalized linear model setting, Yi etal. [Functional and structural methods with mixed measurement error and misclassification in covariates. J Am Stat Assoc. 2015;110:681-696] developed inference methods to adjust for the effects of measurement error in continuous covariates and misclassification in discrete covariates simultaneously for the scenario where validation data are available. The augmented simulation-extrapolation (SIMEX) approach they developed generalizes the usual SIMEX method which is only applicable to handle continuous error-prone covariates. To implement this method, we develop an package, augSIMEX, for public use. Simulation studies are conducted to illustrate the use of the algorithm. This package is available at CRAN.
机译:测量误差和分类错误通常会出现在各种数据收集过程中。众所周知,在数据分析中忽略这些功能通常会导致偏差推断。使用广义线性模型设置,Yi等。 [具有混合测量误差和协变量分类错误的功能和结构方法。 J Am Stat Assoc。 2015; 110:681-696]开发了推理方法,以针对可用验证数据的情况,同时调整连续协变量中的测量误差和离散协变量中的错误分类的影响。他们开发的增强模拟外推(SIMEX)方法概括了通常的SIMEX方法,该方法仅适用于处理容易出错的连续协变量。为了实现此方法,我们开发了一个供公众使用的软件包augSIMEX。进行仿真研究以说明算法的使用。该软件包可在CRAN获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号