首页> 外文期刊>Journal of statistical computation and simulation >A flexible Bayesian non-parametric approach for fitting the odds to case Ⅱ interval-censored data
【24h】

A flexible Bayesian non-parametric approach for fitting the odds to case Ⅱ interval-censored data

机译:一种将贝叶斯拟合到案例Ⅱ区间删失数据的灵活贝叶斯非参数方法

获取原文
获取原文并翻译 | 示例

摘要

Interval-censored survival data arise often in medical applications and clinical trials [Wang L, Sun J, Tong X. Regression analyis of case II interval-censored failure time data with the additive hazards model. Statistica Sinica. 2010;20:1709-1723]. However, most of existing interval-censored survival analysis techniques suffer from challenges such as heavy computational cost or non-proportionality of hazard rates due to complicated data structure [Wang L, Lin X. A Bayesian approach for analyzing case 2 interval-censored data under the semiparametric proportional odds model. Statistics & Probability Letters. 2011;81:876-883; Banerjee T, Chen M-H, Dey DK, et al. Bayesian analysis of generalized odds-rate hazards models for survival data. Lifetime Data Analysis. 2007;13:241-260]. To address these challenges, in this paper, we introduce a flexible Bayesian non-parametric procedure for the estimation of the odds under interval censoring, case II. We use Bernstein polynomials to introduce a prior for modeling the odds and propose a novel and easy-to-implement sampling manner based on the Markov chain Monte Carlo algorithms to study the posterior distributions. We also give general results on asymptotic properties of the posterior distributions. The simulated examples show that the proposed approach is quite satisfactory in the cases considered. The use of the proposed method is further illustrated by analyzing the hemophilia study data [McMahan CS, Wang L. A package for semiparametric regression analysis of interval-censored data; 2015. http://CRAN.R-project.org/package=ICsurv..
机译:间隔检查的生存数据经常出现在医学应用和临床试验中[Wang L,Sun J,Tong X.病例II间隔检查的故障时间数据与累加危害模型的回归分析。统计公报。 2010; 20:1709-1723]。然而,由于复杂的数据结构,大多数现有的区间删失生存分析技术都面临诸如计算量大或危害率不成比例等挑战[Wang L,LinX。贝叶斯方法用于分析案例2下的区间删失数据。半参数比例赔率模型。统计和概率字母。 2011; 81:876-883; Banerjee T,Chen M-H,Dey DK等。生存数据的广义比值风险模型的贝叶斯分析。终身数据分析。 2007; 13:241-260]。为了解决这些挑战,在本文中,我们引入了一种灵活的贝叶斯非参数过程,用于估计间隔审查下的赔率(案例II)。我们使用伯恩斯坦多项式引入先验概率模型,并基于马尔可夫链蒙特卡洛算法提出一种新颖且易于实现的采样方式来研究后验分布。我们还给出了后验分布的渐近性质的一般结果。仿真示例表明,在所考虑的情况下,所提出的方法是令人满意的。通过分析血友病研究数据[McMahan CS,WangL。一个用于区间删节数据的半参数回归分析的软件包; 2015年。http://CRAN.R-project.org/package=ICsurv.。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号