首页> 外文期刊>Journal of statistical computation and simulation >Approximate factor models: finite sample distributions
【24h】

Approximate factor models: finite sample distributions

机译:近似因子模型:有限样本分布

获取原文
获取原文并翻译 | 示例

摘要

In the growing literature of factor analysis, little is done to understand the finite sample properties of an approximate factor model solution. In empirical applications with relatively small samples, the asymptotic theory might be a poor approximation and the resulting distortions might affect the estimation (bias in the point estimate and the standard errors) and the statistical inference. The present paper uses the estimation method of Bai and Ng [Bai, J. and Ng, S., 2002, Determining the number of factors in approximate factor models. Econometrica, 70, 191-221.] and assesses the sampling behavior of the estimated common components, common factors and factor loadings. The study compares the empirical distributions to the asymptotic theory of Bai [Bai, J., 2003, Inference on factor models of large dimension. Econometrica, 71, 135-171.]. Simulation results suggest that the point estimates have a Gaussian distribution for panels with relatively small dimensions. However, these estimates have a significant finite sample bias and the dispersion of their sampling distribution is severely underestimated by the asymptotic theory.
机译:在越来越多的因子分析文献中,很少有人了解近似因子模型解决方案的有限样本属性。在具有相对较小样本的经验应用中,渐近理论可能是一种较差的近似,并且由此产生的失真可能会影响估计(点估计中的偏差和标准误差)和统计推断。本文使用Bai和Ng的估计方法[Bai,J.和Ng,S.,2002,确定近似因子模型中的因子数量。 [Econometrica,70,191-221。],并评估估计的公共成分,公共因子和因子负载的采样行为。该研究将经验分布与Bai的渐近理论进行了比较[Bai,J.,2003,关于大尺寸因素模型的推论。 Econometrica,71,135-171。]。仿真结果表明,对于尺寸相对较小的面板,点估计具有高斯分布。但是,这些估计值具有明显的有限样本偏差,并且其渐近理论严重低估了其采样分布的离散度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号