首页> 外文期刊>Journal of statistical computation and simulation >Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution
【24h】

Maximum likelihood vs. maximum goodness of fit estimation of the three-parameter Weibull distribution

机译:三参数威布尔分布的最大似然与最大拟合优度估计

获取原文
获取原文并翻译 | 示例

摘要

The use of statistics based on the empirical distribution function is analysed for estimation of the scale, shape, and location parameters of the three-parameter Weibull distribution. The resulting maximum goodness of fit (MGF) estimators are compared with their maximum likelihood counterparts. In addition to the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics, some related empirical distribution function statistics using different weight functions are considered. The results show that the MGF estimators of the scale and shape parameters are usually more efficient than the maximum likelihood estimators when the shape parameter is smaller than 2, particularly if the sample size is large.
机译:分析基于经验分布函数的统计信息的使用,以估计三参数威布尔分布的比例,形状和位置参数。将所得的最大拟合优度(MGF)估计值与其最大似然估计值进行比较。除了Kolmogorov-Smirnov,Cramer-von Mises和Anderson-Darling统计,还考虑了一些使用不同权重函数的相关经验分布函数统计。结果表明,当形状参数小于2时,比例和形状参数的MGF估计器通常比最大似然估计器更有效,尤其是在样本量较大的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号