首页> 外文期刊>Journal of statistical computation and simulation >Effect of adding fold-change criteria to significance testing of microarray data
【24h】

Effect of adding fold-change criteria to significance testing of microarray data

机译:添加倍数变化标准对微阵列数据的显着性检验的影响

获取原文
获取原文并翻译 | 示例

摘要

Microarray experiments involve simultaneous testing of thousands of genes, thus leading to a large number of false-significant results. To combat this, a wide range of multiple-testing procedures have been developed to reduce false significance rates and related errors. In contrast, clinical investigators may choose alternative routes having intuitive appeal but less optimal statistical properties, such as requiring a 2-fold change. While the corresponding limitations are commonly recognized, the impact of such approaches has not been specifically characterized for practical scenarios. This study investigates the effect of combining the t-test (with the Benjamini-Hochberg adjustment) and 2-fold-change cut-off on the resulting levels of significance and power. Findings illustrate that both significance and power are often dominated by the 2-fold criteria, essentially negating the properties of the multiple comparisons adjustment. Other cases lead to more complex and potentially counter-intuitive results.
机译:微阵列实验涉及同时测试数千个基因,从而导致大量错误有意义的结果。为了解决这个问题,已经开发了多种多样的多重测试程序以减少错误显着率和相关的错误。相反,临床研究者可以选择具有直觉吸引力但统计性能较差的替代途径,例如需要2倍变化。尽管人们普遍认识到了相应的局限性,但这种方法的影响尚未针对实际情况进行专门描述。这项研究调查了将t检验(通过Benjamini-Hochberg调整)和2倍变化截止值结合使用对所得显着性和功效水平的影响。结果表明,重要性和功效通常都由2倍标准所主导,实质上否定了多重比较调整的性质。其他情况会导致更复杂甚至可能违反直觉的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号