首页> 外文期刊>Journal of statistical computation and simulation >Genetic algorithms for outlier detection in multiple regression with different information criteria
【24h】

Genetic algorithms for outlier detection in multiple regression with different information criteria

机译:具有不同信息标准的多元回归中离群值检测的遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Outliers are abnormal, aberrant or outlying observations in data and can cause distortion of estimations in statistical models. Identification of outliers is an important process for preventing faulty conclusions in statistical analysis. Simultaneous outlier detection, which genetic algorithms (GA) provide, is more successful than the methods based on detecting outliers one by one when an order of detection is important. In this study, we derived new approaches of information criteria which are based on Akaike's information criterion (AIC) and Bozdogan's information complexity (ICOMP) information criterion and we used them as the fitness function of GAs to detect outliers in multiple regression. Performances of AIC' and ICOMP that we derived are compared by Bayesian information criterion (BIC'). Simulation results of AIC', BIC' and ICOMP' obtained from different sample sizes, penalized kappa values of information criteria and different numbers of explanatory variables are presented and discussed.
机译:异常值是数据中的异常,异常或异常观察值,并可能导致统计模型中的估计值失真。异常值的识别是防止统计分析得出错误结论的重要过程。当检测顺序很重要时,遗传算法(GA)提供的同时离群值检测比基于逐个检测离群值的方法更为成功。在这项研究中,我们基于Akaike的信息标准(AIC)和Bozdogan的信息复杂度(ICOMP)信息标准得出了新的信息标准方法,并将其用作GA的适应度函数以检测多元回归中的离群值。我们得出的AIC'和ICOMP的性能通过贝叶斯信息准则(BIC')进行比较。提出并讨论了从不同样本量,信息标准的惩罚κ值和不同数量的解释变量获得的AIC',BIC'和ICOMP'的模拟结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号