首页> 外文期刊>Journal of statistical computation and simulation >Statistical diagnostics for nonlinear regression models based on scale mixtures of skew-normal distributions
【24h】

Statistical diagnostics for nonlinear regression models based on scale mixtures of skew-normal distributions

机译:基于偏正态分布的比例混合的非线性回归模型的统计诊断

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to develop diagnostics analysis for nonlinear regression models (NLMs) under scale mixtures of skew-normal (SMSN) distributions introduced by Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115-124]. This novel class of models provides a useful generalization of the symmetrical NLM [Vanegas LH, Cysneiros FJA. Assessment of diagnostic procedures in symmetrical nonlinear regression models. Comput. Statist. Data Anal. 2010;54:1002-1016] since the random terms distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as the skew-f, skew-slash, skew-contaminated normal distributions, among others. Motivated by the results given in Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115-124], we presented a score test for testing the homogeneity of the scale parameter and its properties are investigated through Monte Carlo simulations studies. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. The newly developed procedures are illustrated considering a real data set.
机译:本文的目的是针对由Garay等人提出的偏正态(SMSN)分布的比例混合的非线性回归模型(NLM)进行诊断分析。 [基于SMSN分布的非线性回归模型。 J.韩国统计员。 Soc。 2011; 40:115-124]。这类新颖的模型为对称NLM [Vanegas LH,Cysneiros FJA提供了有用的概括。评估对称非线性回归模型中的诊断程序。计算统计员。数据肛门。 2010; 54:1002-1016],因为随机项分布既包括对称分布也包括不对称分布和重尾分布,例如偏斜f,斜斜杠,偏斜污染的正态分布等。受Garay等人给出的结果的启发。 [基于SMSN分布的非线性回归模型。 J.韩国统计员。 Soc。 2011; 40:115-124],我们提出了一项用于测试比例参数同质性的评分测试,并通过蒙特卡洛模拟研究对它的特性进行了研究。此外,还获得了案例删除模型中局部影响测度和估算值的一步近似值。结合实际数据集说明了新开发的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号