首页> 外文期刊>Journal of statistical computation and simulation >Study of an imputation algorithm for the analysis of interval-censored data
【24h】

Study of an imputation algorithm for the analysis of interval-censored data

机译:区间删失数据分析的插补算法研究

获取原文
获取原文并翻译 | 示例

摘要

In this article, an iterative single-point imputation (SPI) algorithm, called quantile-filling algorithm for the analysis of interval-censored data, is studied. This approach combines the simplicity of the SPI and the iterative thoughts of multiple imputation. The virtual complete data are imputed by conditional quantiles on the intervals. The algorithm convergence is based on the convergence of the moment estimation from the virtual complete data. Simulation studies have been carried out and the results are shown for interval-censored data generated from the Weibull distribution. For the Weibull distribution, complete procedures of the algorithm are shown in closed forms. Furthermore, the algorithm is applicable to the parameter inference with other distributions. From simulation studies, it has been found that the algorithm is feasible and stable. The estimation accuracy is also satisfactory.
机译:在本文中,研究了一种用于间隔检查数据分析的迭代单点插补(SPI)算法,称为分位数填充算法。这种方法结合了SPI的简单性和多重插补的迭代思想。虚拟完整数据由间隔上的条件分位数估算。算法收敛是基于虚拟完整数据的矩估计的收敛。已经进行了仿真研究,并显示了由威布尔分布产生的区间删失数据的结果。对于威布尔分布,该算法的完整过程以封闭形式显示。此外,该算法适用于与其他分布的参数推断。通过仿真研究,发现该算法是可行且稳定的。估计精度也令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号