首页> 外文期刊>Journal of statistical computation and simulation >Bootstrapping probability-proportional-to-size samples via calibrated empirical population
【24h】

Bootstrapping probability-proportional-to-size samples via calibrated empirical population

机译:通过校准的经验总体自举概率与大小成比例

获取原文
获取原文并翻译 | 示例

摘要

A collection of six novel bootstrap algorithms, applied to probability-proportional-to-size samples, is explored for variance estimation, confidence interval and p-value production. Developed according to bootstrap fundamentals such as the mimicking principle and the plug-in rule, these algorithms make use of an empirical bootstrap population informed by sampled units each with assigned weight. Starting from the natural choice of Horvitz-Thompson (HT)-type weights, improvements based on calibration to known population features are fostered. Focusing on the population total as the parameter to be estimated and on the distribution of the HT estimator as the target of bootstrap estimation, simulation results are presented with the twofold objective of checking practical implementation and of investigating the statistical properties of the bootstrap estimates supplied by the algorithms explored.
机译:探索了六个新颖的自举算法的集合,这些算法适用于与大小成比例的概率,用于方差估计,置信区间和p值生成。这些算法是根据引导程序的基本原理(例如模仿原理和插件规则)开发的,利用了经验性的引导程序种群,该种群由分配了权重的抽样单位提供信息。从Horvitz-Thompson(HT)型权重的自然选择开始,鼓励对已知种群特征进行基于标定的改进。重点关注人口总数作为要估计的参数,并以HT估计量的分布作为引导程序估计的目标,给出了模拟结果,其双重目的是检查实际实施情况和调查由以下人员提供的引导程序估计值的统计属性探索的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号