首页> 外文期刊>Journal of statistical computation and simulation >The log-odd log-logistic Weibull regression model: modelling, estimation, influence diagnostics and residual analysis
【24h】

The log-odd log-logistic Weibull regression model: modelling, estimation, influence diagnostics and residual analysis

机译:对数-对数-逻辑Weibull回归模型:建模,估计,影响诊断和残差分析

获取原文
获取原文并翻译 | 示例

摘要

In applications of survival analysis, the failure rate function may frequently present a unimodal shape. In such cases, the log-normal and log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the odd log-logistic Weibull distribution is proposed for modelling data with a decreasing, increasing, unimodal and bathtub failure rate function as an alternative to the log-Weibull regression model. For censored data, we consider a classic method to estimate the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals is determined and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the new regression model applied to censored data. We analyse a real data set using the log-odd log-logistic Weibull regression model.
机译:在生存分析的应用中,故障率函数可能经常呈现单峰形状。在这种情况下,将使用对数正态分布和对数逻辑分布。在本文中,我们将仅关注参数形式,因此提出了一种基于奇对数逻辑韦伯分布的位置尺度回归模型,以对数据进行递减,递增,单峰和浴缸失效率函数建模,以替代log-Weibull回归模型。对于审查数据,我们考虑了一种经典方法来估计所提出模型的参数。我们推导了适当的矩阵来评估在不同的扰动方案下对参数估计的局部影响,并提出了一些方法来评估全局影响。此外,对于不同的参数设置,样本大小和检查百分比,将执行各种模拟。另外,确定一些修正残差的经验分布,并将其与标准正态分布进行比较。这些研究表明,通常在正常线性回归模型中执行的残差分析可以扩展到应用于检查数据的新回归模型中的修正偏差残差。我们使用对数-对数-logistic Logistic Weibull回归模型分析实际数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号