首页> 外文期刊>Journal of statistical computation and simulation >Causal inference for average treatment effects of multiple treatments with non-normally distributed outcome variables
【24h】

Causal inference for average treatment effects of multiple treatments with non-normally distributed outcome variables

机译:非正态分布结果变量的多次治疗平均治疗效果的因果推论

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we conduct a simulation study to investigate the performance of three popular weighted estimators, namely the Imbens' weighted estimator, the propensity score weighted estimator, and the generalized doubly robust (GDR) estimator for estimating average treatment effects of multiple treatments when the outcome variable is generated from one of the seven commonly seen non-normal distributions: lognormal, student's t, exponential, uniform, gamma, beta, and Weibull. When outcome variables are non-normally distributed, simulation results show that the GDR estimator has a better performance compared to the other two estimators.
机译:在本文中,我们进行了一项模拟研究,以研究三种流行的加权估计量的性能,即Imbens加权估计量,倾向得分加权估计量和广义双稳健(GDR)估计量,用于估计多种治疗方案的平均治疗效果。结果变量是根据七个常见的非正态分布之一生成的:对数正态,学生t,指数,均匀,伽玛,贝塔和威布尔。当结果变量为非正态分布时,仿真结果表明,与其他两个估算器相比,GDR估算器具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号